Gem5全系统跑simpoint

目前网上找到的simpoint案例都是使用se系统调用模式来跑，除了香山的 gem5模拟器(XS-GEM5)是用全系统模式做simpoint加速

XS-GEM5：OpenXiangShan/GEM5 at backport (github.com)

生成香山全系统负载和checkpoint的视频教程 | ShineZ's Homepage (shinezyy.github.io)

SimPoint - XiangShan 官方文档
Run without checkpoint 
运行工作负载的典型流程与 NEMU、 XS-GEM5和香山处理器相似。它们都只支持全系统模拟。为了准备全系统模拟的工作负载，用户需要构建一个空白应用程序或在操作系统中运行用户程序。
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Run  with checkpoints (使用simpoint)
香山使用NEMU 作为checkpoints生成器，只有重载部分使用xs-gem5，
生成和运行checkpoint的流程如下所示

[image: ]
总结上图，使用xs-gem5，NEMU在全系统仿真做simpoint：

· 使用NEMU进行Profile采样和生成checkpoint
· 构建 RISC-V Linux 和 bootloader
· 编译 SPECCPU 2006
· 将 SPECCPU 2006 和 Linux 打包生成镜像
· 用 NEMU 模拟器运行镜像，进行 SimPoint profiling 和生成 checkpoint
· 使用Simpoint3.2进行聚类
· 使用xs-gem5进行重载

全系统simpoint流程图：
[image: ]








使用gem5的se模式做simpoint
se做simpoint流程图：
[image: ]


香山全系统simpoint步骤：

生成 SimPoint 检查点的过程包括3个单独的步骤：
1、 采样(使用NEMU)
2、 聚类(使用Simpoint3.2)
3、 生成checkpoints(使用NEMU)


步骤1：
下面这个5个多小时的视频介绍了如何构建 SPECCPU，将其放入 Linux 中，然后在 NEMU 中运行以获取  BBV (即采样) 
视频地址：2022-12-19 11-54-28.mkv - Google 云端硬盘

[image: ]

步骤2、3：
基于步骤1的BBV进行聚类并生成检查点checkpoint  
文档地址：Make XiangShan Checkpoints (Cluster and Checkpointing part) - 知乎 (zhihu.com)






文献阅读：
以下3篇为传统Simpoint原理相关论文(理解的不透彻，只能大概看懂)：
论文1：
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论文2：
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论文3：



[image: ]



论文4：
[image: ]
论文内容核心是：以simpoint作为辅助，探究微架构对功耗的影响，在不同的工作负载集上引入和应用 SimPoint 方法，使得能够评估比以前的研究平均大2个数量级的工作量。


论文提出使用几个软件模型和性能模拟器结合来估计这些设计的功耗，但它们准确性有限，误差为21%，或是仿真慢，故使用simpoints。
写论文的话可以从simpoint作为辅助，提高准确性和仿真加速方面入手？

使用simpoint能够快速 探索不同微处理器配置的设计空间，为我们提供性能、面积和能源效率等指标，在这方面写论文？


论文内容：
微架构在决定处理器或计算机系统的功耗方面 起着至关重要的作用。

在不同的工作负载集上引入和应用 SimPoint 方法， 我们揭示了 BOOM 的微架构和能量效率之间的关系。

提供一个全面的了解各种微架构配置如何影响性能和功耗。通过这项调查，我们试图揭示微架构，能源消耗和性能之间的关系。





Chipyard 是一个广泛使用的开源框架，该框架使得能够使用敏捷开发方法设计和评估全系统硬件。

我们扩展了 Chipyard 的检查点基础设施，以支持 SimPoint 方法。
这使得我们能够评估比以前的研究平均大2个数量级的工作量。

Chipyard 中引入的 SimPoint 方法的有效使用，所提出的实验流程可用于评估任意大工作负载的任何 CPU 设计——在我们的例子中，模拟时间减少了 45 倍。
通过使用 SimPoints，我们在略多于 2 天的时间内完成了我们的实验，与不考虑跟踪文件大小和处理时间限制的情况下所需的 3 个月以上的执行时间相比，实现了45倍加速。

Simpoint支持比以往任何时候都大得多的工作负载的性能和功耗分析，使整个社区受益。

SimPoint 显著地减少了详细模拟所需的计算资源，同时保持了高度的准确性。这使得它成为优化软件和硬件系统、便于识别关键瓶颈以及最终提高复杂计算环境的总体效率的宝贵工具。





论文5：
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论文内容：
对传统simpoint的优化：
1、仿真加速(提高9.56倍)
2、提高精度(5.80%到3.89% )

与传统的50M simpoint对比，开发了一个开源框架，结合LiveCache 和 detail-warm的热身，使我们能够使用更小(2M) 的 Simpoint 尺寸而不损失准确性，做到10倍加速。 










使用只有 200 万条指令(2M)的 Simpoints。与具有数亿条或更多指令的常规 
simpoint 相比，模拟时间可以从几小时大大减少到 几分钟，而不会丧失准确性。


典型的 Simpoint 规模仍然是数千万到数亿条指令。够使用更小的 Simpoint 尺寸(200 万条指令)而不损失准确性。我们的评估结果表明，平均模拟 时间可以加快 9.56 倍以上的 50m规模和大部分的工作量 模拟可以在几十分钟内完成而不是小时。


使用更小的 Simpoint 大小Simpoint 执行之前是 livecache 热身，然后是 detail 热身，然后开始收集性能数据。

LiveCache 和 detail-warm 使我们能够更新机器状态，保持模拟的准确性


开发了一个开源框架，使我们能够使用更小(2M) 的 Simpoint 尺寸而不损失准确性。 


使用 SPEC 2006 CPU 基准套件评估 2m 的 Simpoint 尺寸。与 50m 的 Simpoint 大小相比，平均模拟时间提高了 9 倍以上。

LiveCache 和 detail-warm 的结合使得 Simpoint 的 
尺寸更小、更快、更准确。 


200 万个 Simpoints 的平均误差(3.89%)低于流行的 5000 万个 Simpoints 
(5.80%)。




发论文点：

个人感觉以simpoint为主发论文的难度比较大？ 目前想法是用simpoint作为辅助，simpoint仿真加速为辅，提高数量级，测试不同的异构带来的功耗、性能之间的关系

simpoint的功能主要是仿真加速，目前simpoint可以改进和优化的点：
1、减少误差率(但simpoint本身的准确率就挺高，再提高精度的话可能难度比较大且效果不明显，第五篇论文精度5%提高到3%)

2、 仿真加速再优化（第五篇论文中，改进的simpoint与传统的simpoint相比提高了10倍仿真速度）
(1) 正常仿真(不使用simpoint)数月量级，传统simpoint数小时量级，第五篇论文优化到数分钟量级。
(2) 加速已经从数月提升到数分钟了，感觉没有啥优化空间了，再优化感觉难度大



可以发论文、写论文的点：
1、结合simpoint作为辅助，对不同架构的仿真加速，测量不同架构对功耗、性能之间的关系。(感觉以simpoint可以改进优化的点发论文难度较大)

2、给定体系结构的有效性如何随其缓存大小等变化。研究人员通过simpoint技术可以减少评估架构修改的影响所需的机器月数

[bookmark: _GoBack]3、使用模拟点进行分支预测器、缓存和TLB研究。最终目标是找到最佳的分支预测器、缓存和 TLB 配置，它们在大多数基准测试中提供最佳性能。
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Program Phase Analysis




CHAPTER-simpoint.pdf
SimPoint: Picking Representative Samples to Guide Simulation

Brad Calder Timothy Sherwood Greg Hamerly Erez Perelman





2

0.1 Introduction

Understanding the cycle level behavior of a processor during the execution of an application
is crucial to modern computer architecture research. To gain this understanding, researchers
typically employ detailed simulators that model each and every cycle. Unfortunately, this
level of detail comes at the cost of speed, and simulating the full execution of an industry
standard benchmark can take weeks or months to complete, even on the fastest of simulators.
Exacerbating this problem further is the need of architecture researchers to simulate each
benchmark over a variety of different architectural configurations and design options, to find
the set of features that provides the appropriate tradeoff between performance, complexity,
area, and power. The same program binary, with the exact same input, may be run hundreds
or thousands of times to examine how, for example, the effectiveness of a given architecture
changes with its cache size. Researchers need techniques which can reduce the number of
machine-months required to estimate the impact of an architectural modification without
introducing an unacceptable amount of error or excessive simulator complexity.

Executing programs have behaviors that change over time in ways that are not random,
but rather are often structured as sequences of a small number of reoccurring behaviors,
which we call phases. This structured behavior is a great benefit to simulation. It allows
very fast and accurate sampling by identifying each of the repetitive behaviors and then
taking only a single sample of each repeating behavior to represent that behavior. All of
these representative samples together represent the complete execution of the program. This
is the underlying philosophy of the tool called SimPoint [16, 17, 14, 2, 9, 8]. SimPoint intel-
ligently chooses a very small set of samples called Simulation Points that, when simulated
and weighed appropriately, provide an accurate picture of the complete execution of the
program. Simulating only these carefully chosen simulation points can save hours of sim-
ulation time over statistically random sampling, while still providing the accuracy needed
to make reliable decisions based on the outcome of the cycle level simulation. This chapter
shows that repetitive phase behavior can be found in programs and describes how SimPoint
automatically finds these phases and picks simulation points.

0.2 Defining Phase Behavior

Since phases are a way of describing the reoccurring behavior of a program executing over
time, let us begin the analysis of phases with a demonstration of the time-varying behav-
ior [15] of two different programs from SPEC 2000, gcc and gzip. To characterize the
behavior of these programs we have simulated their complete execution from start to finish.
Each program executes many billions of instructions, and gathering these results took several
machine-months of simulation time. The behavior of each program is shown in Figures 1
and 4. Each top figure shows how the CPI changes for these two programs over time. Each
point on the graph represents the average value for CPI taken over a window of 10 mil-
lion executed instructions (which we call an interval). These graphs show that the average
behavior does not sufficiently characterize the behavior of the programs.

Note that not only do the behaviors of the programs change over time, they change on
the largest of time scales and even here we can find repeating behaviors. The programs may
have stable behavior for billions of instructions and then change suddenly. In addition to
performance, we have found for the SPEC 95 and 2000 programs that the behavior of all of
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Figure 1: (top graph)Time varying graphs for CPI from each interval of execution for
gzip-graphic at 10 million interval size. The x-axis represents the execution of the program
over time. The results are non-accumulative.

Figure 2: (middle graph) Time varying graph showing the distance to the target vector from
each interval of execution in gzip-graphic for an interval size of 10 million instructions. To
produce the target vector, we create a basic block vector treating the whole program as one
interval. The target vector is a signature of the program’s overall behavior.

Figure 3: (bottom graph) Shows which intervals during the program’s execution are parti-
tioned into the different phases as determined by the SimPoint phase classification algorithm.
The full run of execution is partitioned into a set of 4 phases.

the architecture metrics (branch prediction, cache misses, etc...) tend to change in unison,
although not necessarily in the same direction [15, 17]. This change in unison is due to an
underlying change in the program’s execution, which can have drastic changes across a variety
of architectural metrics. The underlying methodology used in this chapter is the ability to
automatically identify these underlying program changes without relying on architectural
metrics to group the program’s execution into phases. To ground our discussions in a common
vocabulary, the following is a list of definitions that are used in this chapter to describe
program phase behavior and it’s automated classification.

e Interval - A section of continuous execution (a slice in time) of a program. For the results
in this chapter all intervals are chosen to be the same size, as measured in the number of
instructions committed within an interval (either 1, 10, or 100 million instructions [14]).
All intervals are assumed to be non-overlapping, so to perform our analysis we break a
program’s execution up into contiguous non-overlapping fixed length intervals.

e Similarity - Similarity defines how close the behavior of two intervals are to one another
as measured across some set of metrics. Well formed phases should have intervals with
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Figure 4: (top graph)Time varying graphs for CPI from each interval of execution for
gcc-166 at 10 million interval size. The x-axis represents the execution of the program
over time. The results are non-accumulative.

Figure 5: (middle graph) Time varying graph showing the distance to the target vector
from each interval of execution in gcc-166 for an interval size of 10 million instructions. To
produce the target vector, we create a basic block vector treating the whole program as one
interval. The target vector is a signature of the program’s overall behavior.

Figure 6: (bottom graph) Shows which intervals during the program’s execution are parti-
tioned into the different phases as determined by the SimPoint phase classification algorithm.
The full run of execution is partitioned into a set of 8 phases.

similar behavior across various architecture metrics (e.g. IPC, cache misses, branch
misprediction).

e Phase - A set of intervals within a program’s execution that have all behavior similar
to one another, regardless of temporal adjacency. In this way a phase can consist of
intervals that re-occur multiple times (repeat) through the execution of the program
(as can be seen in gzip and gcc).

e Phase Classification - Phase classification breaks up a program/input’s set of intervals

on into phases with similar behavior. This phase behavior is for a specific program
binary running a specific input (a binary/input pair).

0.3 The Strong Correlation Between Code and Performance

As we mentioned in the prior section, for an automated phase analysis technique to be
applicable to architecture design space exploration, we must be able to directly identify the
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underlying changes taking place in the executing program. This section is a description of
techniques which have been shown effective at accomplishing this.

0.3.1 Using an Architecture Independent Metric for Phase Classification

To find phase information, any effective technique requires a notion of how similar two parts
of the execution in a program are to one another. In creating this similarity metric it is
advantageous not to rely on statistics such as cache miss rates or performance, since this
would tie the phases to those statistics. If that was done, then the phases would need to be
re-analyzed every time there is a change to some architecture parameter (either statically if
the size of the cache changed, or dynamically if some policy is changed adaptively). This
is not acceptable, since our goal is to find a set of samples that can be used across an
architecture design space exploration. To address this, we need a metric that is independent
of any particular hardware based statistic, yet it must still relate to the fundamental changes
in behavior shown in Figures 1 and 4.

An effective way to design such a metric is to base it on the behavior of a program in
terms of the code that is executed over time. There is a very strong correlation between
the set of paths in a program that are executed and the time-varying architectural behavior
observed. The intuition behind this is that the code being executed determines the behavior
of the program. With this idea it is possible to find the phases in programs using only a
metric related to how the code is being exercised (i.e. both what code is touched and how
often). It is important to understand that this approach can find the same phase behavior
shown in Figures 1 and 4 by examining only the frequency with which the code parts (e.g.,
basic blocks) are executed over time.

0.3.2 Basic Block Vector

The Basic Block Vector (or BBV) [16] is a structure designed to concisely capture information
about how a program is changing behavior over time. A basic block is a section of code that
is executed from start to finish with one entry and one exit. The metric for comparing two
time intervals in a program is based on the differences in the frequency that each basic block
is executed during those two intervals. The intuition behind this is that the behavior of the
program at a given time is directly related to the code it is executing during that interval,
and basic block distributions provide us with this information.

A program, when run for any interval of time, will execute each basic block a certain
number of times. Knowing this information provides a code signature for that interval of
execution, and shows where the application is spending its time in the code. The basic idea
is that knowing the basic block distribution for two different intervals gives two separate
signatures which we can then compare to find out how similar the intervals are to one
another. If the signatures are similar, then the two intervals spend about the same amount
of time in the same code, and the performance of those two intervals should be similar.

More formally, a Basic Block Vector is a one dimensional array, with one element in the
array for each static basic block in the program. Each interval in an executed program gets
one BBV, and at the beginning of each interval we start with a BBV containing all zeros.
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During each interval, we count the number of times each basic block in the program has
been entered (just during that interval), and record that number into the vector (weighed by
the number of instructions in the basic block). Therefore, each element in the array is the
count of how many times the corresponding basic block has been entered during an interval
of execution, multiplied by the number of instructions in that basic block. For example, if
the 50th basic block has one instruction and is executed 15 times in an interval, then bbv[50]
= 15 for that interval. The BBV is then normalized to 1 by dividing each element by the
sum of all the elements in the vector.

We recently examined frequency vector structures other than basic block vectors for the
purpose of phase classification. We have looked at frequency vectors for data, loops, pro-
cedures, register usage, instruction mix, and memory behavior [9]. We found that using
register usage vectors, which simply counts for a given interval the number of times each
register is defined and used, provides similar accuracy to using basic block vectors. In ad-
dition, tracking only loop and procedure branch execution frequencies performed almost as
well as using the full basic block information. We also found, for SPEC 2000 programs, that
creating data vectors or combined code and data vectors did not improve classification over
just using code [9].

0.3.3 Basic Block Vector Difference

In order to find patterns in the program we must first have some way of comparing the
similarity of two Basic Block Vectors. The operation needed takes as input two Basic Block
Vectors, and outputs a single number corresponding to how similar they are.

We use BBVs to compare the intervals of the application’s execution. The intuition
behind this is that the behavior of the program at a given time is directly related to the
code executed during that interval [16]. We use the basic block vectors as signatures for
each interval of execution: each vector tells us what portions of code are executed, and how
frequently those portions of code are executed. By comparing the BBVs of two intervals, we
can evaluate the similarity of the two intervals. If two intervals have similar BBVs, then the
two intervals spend about the same amount of time in roughly the same code, and therefore
we expect the performance of those two intervals to be similar.

There are several ways of comparing two vectors to one another, such as taking the dot
product or finding the Euclidean or Manhattan distance.

The Euclidean distance, which has been shown to be effective for off-line phase analy-
sis [17, 14], can be found by treating each vector as a single point in a D-dimensional space,
and finding the straight-line distance between the two points. More formally, the Euclidean
distance of two vectors a and b in D-dimensional space is given by:

EuclideanDist(a,b) = (a; — b;)°

D
=1

2

The Manhattan distance on the other hand is the distance between two points if the only
paths followed are parallel to the axes, and is more efficient for on-the-fly phase analysis [18,
10]. In two dimensions, this is analogous to the distance traveled by a car in a city through
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a grid of city streets. This has the advantage that it always gives equal weight to each
dimension. The Manhattan distance is computed by summing the absolute value of the
element-wise subtraction of two vectors. For vectors a and b in D-dimensional space, the
distance is:

D
ManhattanDist(a,b) = Z la; — bl
i—1

0.3.4 Showing the Correlation Between Code Signatures and Performance

A detailed study showing that there is a strong correlation between code and performance can
be found in [8]. The graphs in Figures 4 and 5 give one representation of this by showing the
time-varying CPI and BBV distance graphs for gcc-166 right next to each other. The time-
varying CPI graph plots the CPI for each interval executed (at 10M interval size) showing
how the program’s CPI varies over time. Similarly, the BBV distance graph plots for each
interval the Manhattan distance of the BBV (code signature) for that interval from the whole
program target vector. The whole program target vector is the BBV if the whole program
is viewed as a single interval. The same information is also provided for gzip in Figures 1
and 2. The time-varying graphs show that changes in CPI have corresponding changes in
code signatures, which is one indication of strong phase behavior for these applications.
These results show that the BBV can accurately track the changes in CPI for both gcc and
gzip. It is easy to see that over time the CPI changes accurately mirror changes visible in
the BBV distance graph.

These plots show that code signatures have a strong correlation to the changes in CPI
even for complex programs like gcc. The results for gzip show that the phase behavior
can be found even if the intervals’ CPIs have small variance. This brings up an important
point about picking samples for simulation based on code vectors versus CPI or some other
hardware metric. Assume we have two intervals with different code signatures but they have
very similar C'Pls because both of their working sets fit completely in the cache. During a
design space exploration search, as the cache size changes, the two interval CPIs may differ
drastically since one of them no longer fits into the cache. This is why it is important to
perform the phase analysis by comparing the code signatures independent of the underlying
architecture, and not based upon CPI thresholds. We have found that the BBV code signa-
tures correctly identify this difference, which cannot be seen by looking at just the CPI. If
the purpose of a study is to perform design space exploration it is important to be able to
pick samples that will be representative of the program’s execution no matter the underly-
ing architecture configuration. See [8], for a complete discussion and analysis on the strong
correlation between code and performance.

0.4 Automatically Finding Phase Behavior

Frequency vectors (BBVs, Vectors based on the execution of loops and procedures, or some
other behavior discussed in [9]) provide a compact and representative summary of a pro-
gram’s behavior for each interval of execution. By examining the similarity between them,
it is clear that there are high-level patterns in each program’s execution. In this section we
describe the algorithms used to automatically detect these patterns.





0.4.1 Using Clustering for Phase Classification

It is extremely useful to have an automated way of extracting phase information from pro-
grams. Clustering algorithms from the field of machine learning have been shown to be very
effective [17] at breaking the complete execution of a program into phases that have sim-
ilar frequency vectors. Because the frequency vectors correlate to the overall performance
of the program, grouping intervals based on their frequency vectors produces phases that
are similar not only in the distribution of program structures used, but also in every other
architecture metric measured, including overall performance.

The goal of clustering is to divide a set of points into groups, or clusters, such that points
within each cluster are similar to one another (by some metric, usually distance), and points
in different clusters are different from one another. The k-means algorithm [11] is an efficient
and well-known clustering algorithm, which we use to quickly and accurately split program
behavior into phases. We use random linear projection [5] to reduce the dimension of the
input vectors while preserving the underlying similarity information, which speeds up the
execution of k-means. One drawback of the k-means algorithm is that it requires the number
of clusters k£ as an input to the algorithm, but we do not know beforehand what value is
appropriate. To address this, we run the algorithm for several values of k, and then use a
goodness score to guide our final choice for k.

Taking this to the extreme, if every interval of execution is given its very own cluster,
then every cluster will have perfect homogeneous behavior. Our goal is to choose a clustering
with a minimum number of clusters where each cluster has a certain level of homogeneous
behavior.

The following steps summarize the phase clustering algorithm at a high level. We refer
the interested reader to [17] for a more detailed description of each step.

1. Profile the program by dividing the program’s execution into contiguous intervals of
size N (e.g., 1 million, 10 million, or 100 million instructions). For each interval, collect
a frequency vector tracking the program’s use of some program structure (basic blocks,
loops, register usage, etc.). This generates a frequency vector for every interval. Each
frequency vector is normalized so that the sum of all the elements equals 1.

2. Reduce the dimensionality of the frequency vector data to D dimensions using random
linear projection. The advantage of performing clustering on projected data is that it
speeds up the k-means algorithm significantly, and reduces the memory requirements
by several orders of magnitude over using the original vectors, while preserving the
essential similarity information.

3. Run the k-means clustering algorithm on the reduced dimensional data with values of
k from 1 to K, where K is the maximum number of phases that can be detected. Each
run of k-means produces a clustering, which is a partition of the data into k different
phases/clusters. Each run of k-means begins with a random initialization step, which
requires a random seed.

4. To compare and evaluate the different clusters formed for different k, we use the
Bayesian Information Criterion (BIC) [13] as a measure of the “goodness of fit” of
a clustering to a dataset. More formally, the BIC is an approximation to the probabil-
ity of the clustering given the data that has been clustered. Thus, the higher the BIC
score, the higher the probability that the clustering is a good fit to the data. For each
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clustering (k = 1... M), the fitness of the clustering is scored using the BIC formulation
given in [13].

5. The final step is to choose the clustering with the smallest k, such that its BIC score is
at least B% as good as the best score. The clustering k& chosen is the final grouping of
intervals into phases.

The above algorithm groups intervals into phases. We use the Euclidean distance between
vectors as our similarity metric. This algorithm has several important parameters (N, D, K,
B, and more) which must be tuned to create accurate and representative simulation points
using SimPoint. We discuss these parameters in more detail later in this chapter.

0.4.2 Clusters and Phase Behavior

Figures 3 and 6 show the result of running the clustering algorithm on gzip and gcc using an
interval size of 100 million and setting the maximum number of phases (K') to 10. The z-axis
corresponds to the execution of the program in billions of instructions, and each interval is
tagged to be in one of the clusters (labeled on the y-axis).

For gzip, the full run of the execution is partitioned into a set of 4 clusters. Looking
at Figure 2 for comparison, the cluster behavior captured by the off-line algorithm lines up
quite closely with the behavior of the program. Clusters 2 and 4 represent the large sections
of execution which are similar to one another. Cluster 3 captures the smaller phase that
lies in between these larger phases. Cluster 1 represents the phase transitions between the
three dominant phases. The cluster 1 intervals are grouped into the same phase because
they execute a similar combination of code, which happens to be part of code behavior in
either cluster 2 or 4 and part of code executed in cluster 3. These transition points in cluster
1 also correspond to the same intervals that have large cache miss rate spikes seen in the
time-varying graphs of Figure 1.

Figure 6 shows how gcc is partitioned into 8 different clusters. In comparing this Figure to
Figure 4 and 5, we see that even the more complicated behavior of gcc is captured correctly
by SimPoint. The dominant behaviors in the time-varying CPI and vector distance graphs
can be seen grouped together in the dominant phases 1, 4 and 7.

0.5 Choosing Simulation Points from the Phase Classification

After the phase classification algorithm described in the previous section has done its job,
intervals with similar code usage will be grouped together into the same phase, or cluster.
Then from each phase, we choose one representative interval that will be simulated in detail to
represent the behavior of the whole phase. Therefore, by simulating only one representative
interval per phase, we can extrapolate and capture the behavior of the entire program.

To choose a representative, SimPoint picks the interval that is closest to the center of
each cluster. The center is the average of all the intervals in the cluster, and is called the
centroid. This is analogous to the balance point of all the points that are in that cluster,
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if all points had the same mass. It can also be viewed as the interval which behaves most
like the average behavior of the entire phase. Most likely there is no interval that exactly
matches the centroid, so the interval closest to the center is chosen. The selected interval is
called a Simulation Point for that phase [14, 17]. Detailed simulation is then performed on
the set of simulation points.

SimPoint also gives a weight for each simulation point. Each weight is a fraction; it is
the total number of instructions counting all of the intervals in the cluster, from which the
simulation point was taken, divided by the number of instructions in the program. With the
weights and the detailed simulation results of each simulation point, we compute a weighted
average for the architecture metric of interest (CPI, miss rate, etc). This weighted average
of the simulation points gives an accurate representation of the complete execution of the
program/input pair.

0.6 Using the Simulation Points

After the SimPoint algorithm has chosen a set of simulation points and their respective
weights, they can be used to accurately estimate the full execution of a program. The next
step is to simulate in detail the interval for each simulation point, to collect the desired
performance statistics.

0.6.1 Simulation Point Representation

SimPoint provides the simulation points in two forms:

Simulation Point Interval Number — The interval number for each simulation point
is given. The interval numbers are relative to the start of execution, not to the previous
simulation point. To get the start of a simulation point, subtract 1 from the interval number,
and multiply by the interval size. For example, interval number 15 with an interval size of
10 million instruction means that the simulation point starts at instruction 140 million (i.e.
(15-1)*10M) from the start of execution. Detailed simulation of this simulation point would
occur from instruction 140 million until just before 150 million.

Start PC with Execution Count — SimPoint also provides for each simulation point
the program counter for the first instruction executed for the interval and the number of
times that instruction needs to be executed before starting simulation. For example, if the
PC is 0x12000340 with an execution count of 1000, then detailed simulation starts the 1000th
time that PC is seen during execution, and simulation occurs for the length of the profile
interval.

It is highly recommended that you use the simulation point PCs for performing your
simulations. There are two reasons for this. The first reason deals with making sure you
calculate the instructions during fast-forwarding exactly the same as when the simulation
points were gathered. The second reason is that there can be slight variations in execution
count between different runs of the same binary/input due to environment variables or
operating system variations when running on a cluster of machines. Both of these are
discussed in more detail later in this chapter.
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0.6.2 Getting to the Starting Sample Image

After choosing the form of simulation points to use, each simulation point is then simulated.
Two standard approaches for doing this are to use either fast-forwarding or checkpointing.

Fast-Forwarding — Sort the simulation points in chronological order. Fast-forward to
the start of the first simulation point. Simulate at the desired detail for the size of the
interval. Repeat these steps, fast-forwarding from one point to the next combined with
detailed simulation, until all simulation intervals have been collected.

Checkpointing Starting Sample Image — One advantage of SimPoint is that the
state of a program can be checkpointed (e.g., using SimpleScalar’s checkpoint facility) right
before the start of each simulation point. This checkpointing allows parallel simulation of
all of the simulation points at once.

Reduced Checkpoints — Checkpointing is used to obtain the startup image size of the
sample to be simulated. A technique proposed in [1] examines only storing the memory
words accessed in the simulation point to create a reduced checkpoint. This results in two
orders of magnitude less storage then full checkpointing, and significantly faster simulation.

0.6.3 Warmup

Using small interval sizes for your simulation points requires having an approach for warming
up the architecture state (e.g., the caches, TLBs, and branch predictor). The following are
some standard approaches for dealing with warmup.

No Warmup — If a large enough interval size is used (e.g., larger than 100 million
instructions), no warmup may be necessary for many programs. This is the approach used
by Intel’s PinPoint for simulation [12]. They simulate intervals of size 500 million instructions
so they do not have to worry about any warmup issues. They chose to go the SimPoint route
with large interval sizes because of the complexity of integrating statistical simulation and
warmup into their detailed cycle accurate simulator.

Assume Hit (Remove Cold Structure Misses) — All of the large architecture struc-
tures (e.g., cache, branch predictors) make use of a warmup bit that indicates when the
first time an entry (e.g., cache block) in that structure is used. If it is the first time, the
access is assumed to be a hit or a correct prediction, since most programs have low miss
rates. One can also use a miss rate percentage (e.g., 10%) for these cold structure misses,
randomly assuming some percentage of the cold start accesses are misses. This a very simple
method that provides fairly accurate warmup state, since the miss rates for these structures
are usually fairly low [19, 7].

Stale State — This is a method of not resetting the architecture structures between
simulation points, and instead they are used in the state they were in at the end of the prior
simulation point we just fast-forwarded from [4].

Calculated Warmup — One can calculate the working set of the most recently accessed
data, code and branch addresses before a simulation point. Then start the simulation of
architectural components W instructions before the simulation point, where W is large
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enough to capture the working set size held by the architecture structures. After these W
instructions are simulated, all statistics are reset and detailed simulation starts at that point.
The goal of this approach is to bring the working set back into the architecture structures
before starting the detailed simulation [3, 6].

Continuously Warm — This approach continuously keeps the state of certain archi-
tecture components warm (e.g., caches) even during fast-forwarding [20]. This is feasible if
an infrastructure provides fast functional and structure simulation during fast-forwarding.
Keeping the cache structures warm will increase the time it takes to perform fast-forwarding,
but it is very accurate.

Architecture Structure Checkpoint — An architecture checkpoint is the checkpoint
of the potential contents of the major architecture components (caches, branch predictors,
etc) at the start of the simulation point [1]. This can be used to significantly reduce warmup
time, since warmup consists of just reading the architecture structure checkpoint from the
file and using it to initialize the architecture structures.

If you decide to use small interval sizes, Calculated Warmup and Architecture Check-
pointing provide the most accurate and efficient warmup, although we have found that for
many programs Assume Hit and Stale State are fairly accurate.

0.6.4 Combining the Simulation Point Results

The final step in using SimPoint is to combine the weighted simulation points to arrive at an
overall performance estimate for the program’s execution. One cannot just use the standard
mean for computing the overall miss rate, since we need to apply a weight to each sample.

Each weight represents the proportion of the total execution that belongs to its phase.
The overall performance estimate is the weighted average of the set of simulation point
estimates. For example, if we have 3 simulation points and their weights are [.22, .33,
A45] and their CPIs are (CPI1, CPI2, CPI3), then the weighted average of these points is:
CPI=022«CPI1+033«CPI2+045xCPI3

The weighted average CPI is the estimate of the CPI for the full execution.

0.6.5 Pitfalls to Watch for When Using Simulation Points

There are a few important potential pitfalls worth addressing to ensure accurate use of
SimPoint’s simulation points.

Calculating Weighted IPC — For IPC (instructions/cycle) we cannot just apply the
weights as above. We first would need to convert all the simulated samples to CPI before
computing the weighted average as above, and then convert the result back to IPC.

Calculating Weighted Miss Rates — To compute an overall miss rate, first we must
calculate both the weighted average of the number of cache accesses, and the weighted
average of the number of cache misses. Dividing the second number by the first gives the
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cache miss rate. In general, care must be taken when dealing with any ratio because both
the numerator and the denominator must be averaged separately and then divided.

Accurate Instruction Counts (No-ops) — It is important to count instructions exactly
the same for the BBV profiles as for the detailed simulation, otherwise they will diverge. Note
that the simulation points on the SimPoint website include only correct path instructions and
the instruction counts include no-ops. Therefore, to reach a simulation point in a simulator,
every committed instruction (including no-ops) must be counted.

System Call Effects — Some users have reported system call effects when running the
same simulation points under slightly different OS configurations on a cluster of machines.
This can result is slightly more or less instructions being executed to get to the same point
in the program’s execution, and if the number of instructions executed is used to find the
simulation point this may lead to variations in the results. To avoid this, we suggest using
the Start PC and Execution Count for each simulation point as described above. Another
way to avoid variations in startup is to use checkpointing as described above.

0.6.6 Accuracy of SimPoint

We now show the accuracy of using SimPoint for the complete SPEC 2000 benchmark suite
and their reference inputs. Figure 7 shows the simulation accuracy results using SimPoint
for the SPEC 2000 programs when compared to the complete execution of the programs.
For these results we use an interval size of 100 million and limit the maximum number
of simulation points (clusters) to no more than 10 for the off-line algorithm. With the
above parameters SimPoint finds 4 phases for gzip, and 8 for gcc. As described above,
one simulation point is chosen for each cluster, so this means that a total of 400 million
instructions were simulated for gzip. The results show that this results in only a 4% error
in performance estimation for gzip. Note, if you desire lower error rates, you should use
smaller interval sizes and more clusters as shown in [14].

For the non-SimPoint results, we ran a simulation for the same number of instructions as
the SimPoint data to provide a fair comparison. The results in Figure 7 show that starting
simulation at the start of the program results in a median error of 58% when compared to
the full simulation of the program, whereas blindly fast forwarding for 1 billion instructions
results in a median 23% IPC error. When using the clustering algorithm to create multiple
simulation points we saw a median IPC error of 2%, and an average IPC error of 3%.
In comparison to random sampling approaches, we have found that SimPoint is able to
achieve similar error rates requiring significantly (5 times) less simulation (fast-forwarding)
time [14]. In addition, statistical sampling can be combined with SimPoint to create a phase
clustering that has a low per-phase variance [14]. Recently, using phase information has
even been applied to create accurate and efficient simulation for multi-program workloads
for Simultaneous Multithreading [2].

0.6.7 Relative Error During Design Space Exploration

The absolute error of a program/input run on one hardware configuration is not as important
as tracking the change in metrics across different architecture configurations. There is a lot
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Figure 7: Simulation accuracy for the SPEC 2000 benchmark suite when performing de-
tailed simulation for several hundred million instructions compared to simulating the entire
execution of the program. Results are shown for simulating from the start of the program’s
execution, for fast-forwarding 1 billion instructions before simulating, and for using Sim-
Point to choose less than ten 100 million intervals to simulate. The median results are for
the complete SPEC 2000 benchmarks.

of discussion and research into getting lower error rates. But what often is not discussed
is that a low error rate for a single configuration is not as important as achieving the same
relative error rates across the design space search and having them all biased in the same
direction.

We now examine how SimPoint tracks the relative change in hardware metrics across
several different architecture configurations. To examine the independence of the simulation
points from the underlying architecture, we used the simulation points for the SimPoint
algorithm with a 1 million interval size and max K set to 300. For the program/input runs
we examine, we performed full program simulations while varying the memory hierarchy,
and for every run we used the same set of simulation points when calculating the SimPoint

estimates. We varied the configurations and the latencies of the L1 and L2 caches as described
in [14].

Figure 8 shows the results across the 19 different architecture configurations for gcc-166.
The left y-axis represents the performance in Instructions Per Cycle and the z-axis represents
different memory configurations from the baseline architecture. The right y-axis shows the
miss rates for the data cache and unified L2 cache, and the L2 miss rate is a local miss
rate. For each metric, two lines are shown, one for the true metric from the complete
detailed simulation for every configuration, and the second for the estimated metric using

our simulation points. For each graph, the configurations on the z-axis are sorted by the
IPC of the full run.

Figure 8 shows that the simulation points, which are chosen by only looking at code usage,
can be used across different architecture configurations to make accurate architecture design
trade-off decisions and comparisons. These results show that simulation points track the
relative changes in performance metrics between configurations. One interesting observation
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Figure 8: This plot shows the true and estimated IPC and cache miss rates for 19 different
architecture configurations for the program gcc. The left y-axis is for the IPC and the right
y-axis is for the cache miss rates for the L1 data cache and unified L2 cache. Results are
shown for the complete execution of the configuration and when using SimPoint.

is that although the simulation results from SimPoint have a bias in the metrics, this bias
is consistent and always in the same direction across the different configurations for a given
program/input run. This is true for both IPC and cache miss rates. One reason for this
bias is that SimPoint chooses the most representative interval from each phase, and intervals
that represent phase change boundaries may (if they occur enough) or may not (if they do
not occur enough) be represented by a simulation point.

0.7 Discussion About Running SimPoint

The SimPoint toolkit implements the algorithms described in this chapter. There are a
variety of parameters which can be tuned when running the tool to create simulation points
for new benchmarks, architectures, or inputs. In this section, we describe these parameters
and discuss how they may be adjusted to meet your simulation needs.

Size of interval — The number of instructions per interval is the granularity of the
algorithm. The interval size directly relates to the number of intervals, since the dynamic
program length is the number of intervals times the interval size. Larger intervals allow
more aggregate profile (basic block vector) representations of the program, while smaller
intervals allow for more fine-grained representations. The interval size affects the number of
simulation points; with smaller intervals more simulation points are needed than when using
larger intervals to represent the same proportion of the program. Perelman [14] showed that
using smaller interval sizes (1 million or 10 million) results in more accuracy when using
SimPoint. The disadvantage is that with smaller interval sizes warmup becomes more of
an issue, whereas with larger interval sizes warmup is not as much of an issue and may be
preferred for some simulation environments [12].
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Number of intervals — There should be a fair number of intervals for the clustering
algorithm to choose from. A good rule of thumb is to make sure to use at least 1,000 intervals
in order for the clustering algorithm to be able to find a good partition of the intervals.
If there are too few intervals, then decrease the interval size to obtain more intervals for
clustering.

K — The maximum number of clusters (K), along with the interval size, represents the
maximum amount of simulation time that will be needed when looking to choose simulation
points. If SimPoint chooses a number of clusters that is close to the maximum allowed, then
it is possible that K is too small. If this is the case and more simulation time is acceptable,
it is better to double the K and re-run the SimPoint analysis.

Creating simulation points with SimPoint comes down to recognizing the tradeoff of
accuracy for simulation time. If a user wants to place a low limit on the number of clusters
to limit simulation time, SimPoint can still provide accurate results, but some intervals with
differing behaviors may be clustered together as a result.

Random Seeds — The k-means clustering algorithm starts from a randomized initial-
ization, which requires a random seed. It is well-known that k-means can produce very
different results depending on its initialization, so it is good to use many different random
seeds for initializing different k-means clusterings, and then allow SimPoint to choose the
best clustering. We have found that in practice, using 5 to 7 random seeds works well.

Number of iterations — The k-means algorithm iterates either until it hits a maximum
number of iterations or until it reaches a point where no further improvement is possible
(whichever is less). In most cases 100 iterations is sufficient for the maximum number, but
more may be required, especially if the number of intervals is very large compared to the
number of clusters. A very rough rule of thumb is the number of iterations should be set to

\/N/k, where N is the number of intervals and & is the number of clusters.

Number of dimensions — SimPoint uses random linear projection to reduce the di-
mension of the clustered data, which dramatically reduces computational requirements while
retaining the essential similarity information. SimPoint allows the user to define the number
of dimensions to project down to. In our experiments we project down to 15 dimensions,
as we have found that using it produces the same phases as using the full dimension. We
believe this to be adequate for SPEC 2000 applications, but it is possible to test other values
by looking at the consistency of the clusters produced when using different dimensions [17].

BIC percent — The BIC gives a measure of the goodness of the clustering of a set of data,
and BIC scores can be compared for different clusterings of the same data. However, the
BIC score is an approximation of a probability, and often increases as the number of clusters
increase. This can lead to often selecting the clustering with the most clusters. Therefore,
we look at the range of BIC scores, and select the score which attains some high percentage
of this range (e.g. we use 90%). When the BIC rises and then levels off, this method chooses
a clustering with the fewest clusters that is near the maximum value. Choosing a lower BIC
percent would prefer fewer clusters, but at the risk of less accurate simulation.
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0.8 Summary

Understanding the cycle level behavior of a processor running an application is crucial to
modern computer architecture research, and gaining this understanding can be done ef-
ficiently by judiciously applying detailed cycle level simulation to only a few simulation
points. The level of detail provided by cycle level simulation comes at the cost of simulation
speed, but by targeting only one or a few carefully chosen samples for each of the small
number of behaviors found in real programs, this cost can be reduced to a reasonable level.

The main idea behind SimPoint is the realization that programs typically only exhibit a
few unique behaviors which are interleaved with one another through time. By finding these
behaviors and then determining the relative importance of each one, we can maintain both
a high level picture of the program’s execution and at the same time quantify the cycle level
interaction between the application and the architecture. The key to being able to find these
phases in a efficient and robust manner is the development of a metric that can capture the
underlying shifts in a program’s execution that result in the changes in observed behavior.
In this chapter we have discussed one such method of quantifying executed code similarity,
and use it to find program phases through the application of statistical and machine learning
methods.

The methods described in this chapter are distributed as part of SimPoint [14, 17]. Sim-
Point automates the process of picking simulation points using an off-line phase classification
algorithm, which significantly reduces the amount of simulation time required. These goals
are met by simulating only a handful of intelligently picked sections of the full program.
When these simulation points are carefully chosen, they provide an accurate picture of the
complete execution of a program, which gives a highly accurate estimation of performance.
The SimPoint software can be downloaded at:

http://www.cse.ucsd.edu/users/calder /simpoint /
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Abstract. The SPEC CPU2006 suite, released in Aug 2006 is the current industry-standard, CPU-
intensive benchmark suite, created from a collection of popular modern workloads. But, these workloads
take machine weeks to months of time when fed to cycle accurate simulators and have widely varying
behavior even over large scales of time [1]. It is to be noted that we do not see simulation based papers
using SPEC CPU2006 even after 1.5 years of its release. A well known technique to solve this problem
is the use of simulation points [2]. We have generated the simulation points for SPEC CPU2006 and
made it available at [3]. We also report the accuracies of these simulation points based on the CPI,
branch misspredictions, cache & TLB miss ratios by comparing with the full runs for a subset of
the benchmarks. It is to be noted that the simulation points were only used for cache, branch and
CPI studies until now and this is the first attempt towards validating them for TLB studies. They
have also been found to be equally representative in depicting the TLB characteristics. Using the
generated simulation points, we provide an analysis of the behavior of the workloads in the suite for
different branch predictor & cache configurations and report the optimally performing configurations.
The simulations for the different TLB configurations revealed that usage of large page sizes significantly
reduce the translation misses and aid in improving the overall CPI of the modern workloads.

1 Introduction

Understanding program behaviors through simulations is the foundation for computer archi-
tecture research and program optimization. These cycle accurate simulations take machine
weeks of time on most modern realistic benchmarks like the SPEC [4] [5] [6] suites incurring
a prohibitively large time cost. This problem is further aggravated due to the need to simu-
late on different micro-architectures to test the efficacy of the proposed enhancement. This
necessitates the need to come up with techniques [7] [8] that can facilitate faster simulations
of large workloads like SPEC suites. One such well known technique is the Simulation Points.
While there are Simulation Points for the SPEC CPU2000 suite widely available and used,
the simulation points are not available for the SPEC CPU2006 suite. We used the SimPoint
[9] [10] [11] tool to generate these simulation points for the SPEC2006 benchmark suite and
provide it for use at [3].

The contributions of this paper are two-fold. The first contribution is the creation of
the simulation points, which we make it available at [3] to the rest of the architecture
research community. We also provide the accuracy of these simulation points by comparing
the results with the full run of select benchmarks. It must be noted that 1.5 years after the
release of SPEC CPU2006, simulations based papers using CPU2006 are still not appearing
in architecture conferences. The availability of simulation points for CPU2006 will change
this situation.

The second contribution is the use of CPU2006 simulation points for branch predictor,
cache & TLB studies. Our ultimate goal was to find the optimal branch predictor, the cache





and the TLB configurations which provide the best performance on most of the benchmarks.
For this, we analyzed the benchmark results for different set of static and dynamic branch
predictors [12] and tried to come up with the ones that perform reasonably well on most
of the benchmarks. We then varied the size of one of these branch predictors to come up
with the best possible size for a hardware budget. A similar exercise was performed to come
up with the optimum instruction and data cache design parameters. We varied both the
associativity and size of caches to get an insight into the best performing cache designs for
the modern SPEC CPU workloads. The performance for different TLB configurations was
also studied to infer the effect of different TLB parameters like the TLB size, page size and
associativity.

It should be noted that such a study without simulation points will take several machine
weeks. Since the accuracy of the simulation points were verified with several full runs, we
are fairly confident of the usefullness of the results.

2 Background

Considerable work has been done in investigating the dynamic behavior of the current day
programs. It has been seen that the dynamic behavior varies over time in a way that is not
random, rather structured [1] [13] as sequences of a number of short reoccurring behaviors.
The SimPoint [2] tool tries to intelligently choose and cluster these representative samples
together, so that they represent the entire execution of the program. These small set of sam-
ples are called simulation points that, when simulated and weighted appropriately provide
an accurate picture of the complete execution of the program with large reduction in the
simulation time.

Using the Basic Block Vectors [14] , the SimPoint tool [9][10][11] employs the K-means
clustering algorithm to group intervals of execution such that the intervals in one cluster are
similar to each other and the intervals in different clusters are different from one another.
The Manhattan distance between the Basic Block Vectors serve as the metric to know the
extent of similarity between two intervals. The SimPoint tool takes the maximum number
of clusters as the input and generates a representative simulation point for each cluster. The
representative simulation point is chosen as the one which has the minimum distance from
the centroid of the cluster. Each of the simulation points is assigned a weight based on the
number of intervals grouped into its corresponding cluster. These weights are normalized
such that they sum up to unity.

3 Methodology

In this paper we used sim-fast, sim-outorder simulators of the simplescalar toolset [6] along
with the SimPoint tool to generate the simulation points for the SPEC CPU2006 suite.
Figure 1 shows the flowchart representation of the methodology. We used sim-fast simulator
to identify the different basic blocks in the static code of the benchmark and generate a
Basic Block Vector for every fixed dynamic interval of execution of the program. We chose
the interval size to be 100 million instructions. Further, these basic block vectors are fed
as input to the clustering algorithm of the SimPoint tool, which generates the different





simulation points (collection of Basic Block Vectors) and their corresponding weights. Having
obtained the simulation points and their corresponding weights, the simulation points are
tested by fast-forwarding (i.e., executing the program without performing any cycle accurate
simulation, as described in [3]) up to the simulation point, and then running a cycle accurate
simulation for 100 million instructions. The sim-outorder tool provides a convenient method
of fast-forwarding, to simulate programs in the manner described above. Fast-forwarding
a program implies only a functional simulation and avoids any time consuming detailed
cycle accurate measurements. The statistics like CPI (Cycles Per Instruction), cache misses,
branch mispredictions etc. are recorded for each simulation point. The metrics for the overall
program were computed based on the weight of each simulation point. Each of the individual
simulation point is simulated in parallel and their results were aggregated based on their
corresponding normalized weight. For example, the CPI was computed by multiplying the
CPI of each individual simulation point with its corresponding weights as in eqn (1).

CPI =) (CPI; x weight,) (1)

i=0
On the other hand, the ratio based metrics like branch misprediction rate, cache miss
ratio were computed by weighing the numerator and denominator correspondingly as in eqn

2).

> (misses; x weight;)

MissRatio = (2)

The accuracy of the generated simulation points were studied by performing the full
program simulation using sim-outorder simulator and comparing the metrics like CPI, cache
miss ratios and branch mispredictions. This validation was performed to know the effec-
tiveness of the SimPoint methodology on SPEC CPU2006 [15] suite in depicting the true
behavior of the program. Since, sim-outorder runs on SPEC CPU2006 take machine weeks
of time, we restricted ourselves to running only a few selected benchmarks for this purpose.

For studying the branch behavior of the suite we once again used the sim-outorder sim-
ulator available in SimpleScalar [6]. This tool has in-built implementation for most of the
common static and dynamic branch predictors namely Always Taken, Always Not-Taken,
Bimodal, Gshare and other Twoway adaptive predictors. We studied the influence of above
predictors on the program behavior in terms of common metrics like execution time, CPI,
branch misprediction. One of the best performing predictors was chosen and the Pattern
History Table (PHT) size was varied and the results were analyzed to come up with an
optimal size for the PHT.

To get an insight into the memory and TLB behavior of the Suite, the same sim-outorder
simulator was employed, using which the configurations for the different levels of the cache
hierarchy and TLB were specified. We obtained the corresponding hit and miss rate for
various configurations along with their respective CPIs.

* o(lookups; * weight,)

4 Simulation Points Generation and Verification

Figures 2 shows the sim-fast results for the SPECINT and SPECFP benchmarks. The tables
in the Figures. 2 and 3 show the number of simulation points generated for each of the bench-
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Fig. 1. Simulation point Generation and Verification

marks along with their instruction count and simulation time on a 2 GHz Xeon machine.
The interval of execution given to the sim-fast simulator was 100 million instructions. Also,
maximum number of clusters given to the SimPoint tool were 30. These simulation points
were launched as parallel jobs on the Texas Advance Computing Center (TACC) using the
sim-outorder simulator. A node on TACC could have been 2x to 3x faster than the other xeon
machine to which the execution times are compared. But, still the speedup numbers here are
too high that this discrepancy in machine speeds can be safely ignored. The final aggregated
metrics for the simulation point runs were calculated using the formulae mentioned in the
previous section. The full run simulations were also carried out for a few integer and floating
point benchmarks and the accuracy of the generated simulation points were obtained by
comparing the results.

To verify the accuracy of the simulation points, we further compared the CPIs and cache
miss ratios of the simulation point run to that of full run and analyzed the speedup obtained
due to the usage of simulation points. The configuration that we used to simulate the various
full and the simulation point runs is with a RUU size of 128, LSQ size of 64, decode, issue
and commit widths of 8, L1 data and instruction cache size of 256 sets, 64B block size,
an associativity of 2, L2 data and instruction cache size of 4096 sets, 64B block size, an
associativity of 4. The ITLB size used was 32 sets with 4K block size, and an associativity of
4. The DTLB size used was 64 sets, 4K block size and an associativity of 4. The number of
Integer ALUs were set to 4 and the number of Floating Point ALUs were set to 2. A combined
branch predictor with a meta table size of 2048. The error percentage in CPI and the speed-up
obtained due to the use of simulation points are given in Figures 3 and 4 . Clearly, performing





the simulation using the generated simulation points results in considerable speedup without
much loss in the accuracy, reducing machine weeks of time to a few hours. The CPI values
obtained using simulation points was within 5 percent of the full run CPI values for all the
benchmarks except 401.bzip where the value was off by around 8 percent. Even the error
in Data, Instruction cache miss rates, DTLB miss rates and the branch misprediction ratios
were within a limit of 5 percent for most of the benchmarks excepting bzip and libquantum
that have an error of 11% and 13% for the branch missprediction rates. Figures 4, 5, 6, 7
show the errors in the values of CPI, branch mispredictions, data cache, instruction cache
and DTLB miss rates for a set of benchmarks. Though the concept of simulation points
have been widely used in various studies about caches, branch predictors etc., this is the
first attempt towards validating and studying the TLB characteristics based on simulation
points. It is quite evident from the results that these simulation points are representative
of the whole benchmark even in terms of the TLB characteristics. Though the methodology
used by SimPoint is micorarchitecture independent, this validation is performed by taking
one specific platform (alpha) as a case study and the error rates may vary for other platforms.

We hope that these simulation points that are provided [3] will serve as a powerful tool
aiding in carrying out faster simulations using the large and representative benchmarks of the
SPEC CPU2006 Suite. The reference provided has the simulation points for 21 benchmarks
and we are in the process of generating the remaining simulation points, which will also be
added to the same reference.

SPECINT No.of | Total No. of | Simulation SPECFP No. of | Total No. of Simulation
Benchmark Sim- Instructions time Benchmar Sim- Instructions time
points {in Billions) & points | [in Billions)
401.bzip 21 213.0 15 hrs 410.bwaves 14 217.9 7 days
445.gobmk 19 430.7 22 hrs 435.gromacs 20 2947 5 days 17 hrs
456, hmmer g8 9503 1 7 days 437 lesliedd 24 26003 7 days 3 hrs
458.5jeng 12 &7 T 9 days 444.namd 21 2993 8 6 days
462 libquantum 20 1089 5 days 13 hrs 447 dealll 3 37 13 minutes
464.h264ref 14 563 8 days 6 hrs 450.50plex 21 486.4 1 days 10 hrs
471.omnetpp 1 729.0 2 days16 hrs 482.5phine3 21 4004.8 9 days 22 hrs
473 astar g8 J66.5 Jdays 17 hrs | 459.GemsF 25 2996 17 hrs
400.perlbench 14 184 .5 2.6 hrs 434 zeusmp 26 1092 1 day
433.milc 21 12924 15 hrs
436.cactusA 9 45E0.1 14 days7 hrs

Fig. 2. SPEC CPU2006 - Number of simulation points, total number of instructions and the simulation time taken
by the Simfast simulator of the SimpleScalar LLC. It is to be noted that Simoutorder will take an order more time
than Simfast





Benchmark Simpoint Full Speedup
I it

445 gobmk 5.53 hrs 34 days | 148
450 soplex 3.62 hrs 77 days | 502
A73. astar 11 hrs 78 days | 171
471.omnetpp 10.21 hrs | 91 days | 213
401 . bzip 5 hrs 11 days | 53.3
447 dealll 2.6 mins 1.9 hre | 42.6
400.perlbench 3.7 hrs ‘_}gﬁ‘ﬁr’: 29.6
482 libguantum 19 hrs 42 days | 53

Fig. 3. Speedup obtained by using the simulation points. The simulation point runs were done on the Texas Advance

Computing Center and the full runs on a quad core 2 Ghz Xeon Processor
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5 Simulation Results and Analysis

5.1 Branch Characteristics

As mentioned earlier, sim-outorder supports both static and dynamic branch predictors.
static predictors are quite ideal for the embedded applications due to their simplicity and
low power requirements. Static predictors are also employed in designing simple cores in
case of single chip multiprocessors like Niagara [15], where there exists strict bounds on
area and power consumption on each core. It is also commonly used as backup predictors in
superscalar processors that require an early rough prediction during training time and when
there are misses in the Branch Targe Buffer. On the other hand, dynamic predictors give
superior performance compared to the static ones but at the cost of increased power and
area, as implemented in the modern complex x86 processors.

Fig. 9 shows the CPI results for two common type of static branch predictors viz., Always
Taken and Always Not-Taken. As expected, it is clear from Fig. 9 and Fig. 11 that the
performance of static predictors is quite poor compared to the perfect predictor. Always
taken has the overhead in branch target calculation, but most of the branches in loops are
taken.

Fig. 10 shows the CPI results for some common dynamic branch predictors. In this
paper, we have studied the performance of the following dynamic predictors viz., Bimodal,
Combined, Gshare, PAg and GAp. The configurations that were used for these predictors
respectively are,

— Bimodal - 2048

— Combined - 2048 (Meta table size)
— Gshare - 1:8192:13:1

— PAg - 256:4096:12:0

— GAp - 1:8192:10:0

Gshare, PAg and GAp are 2level predictors and their configurations are given in the
format {11size:12size:hist_size:xor}. Clearly, the CPI values obtained using dynamic predictors
is much closer to the values obtained from the perfect predictor. Also, among these predictors,
Gshare and Combined branch predictors performs much better compared to others. Taking
a closer look at the graphs, we see that the Gshare predictor is ideal in the case of FP
benchmarks while combined predictors fares better for the integer benchmarks. Also, PAg
performs better than GAp predictor which indicates that a predictor with a global Pattern
History Table (PHT) performs better than one with a private PHT. This clearly shows that
constructive interference in a global PHT is helping the modern workloads and results in an
improved CPI.

Looking at the performance of the private and the global configurations of the Branch
History Shift Register (BHSR), it is evident that each of them perform well on specific
benchmarks. Fig. 12 shows the misprediction rates for the different dynamic predictors. The
performance improvement in CPI and Misprediction rate by using a dynamic predictor to
a static predictor is drastic for the cases of /71.omnetpp and 416.gamess. Both of these
benchmarks are pretty small workloads, that their branch behavior is easily captured by
these history based Branch Predictors. 462.libguantum and 450.soplex also have a significant
improvement in the CPI compared to their static counterparts, which can be attributed to





fact that the dynamic predictors are able to efficiently capture the branch behavior of these
benchmarks.

For the purpose of analyzing the effect of PHT size on the behavior of the programs,
we chose one of the best performing predictors obtained in the previous analysis i.e. Gshare
and varied the size of it’s PHT. We used PHT of index 12, 13 and 14 bits and observed the
improvement in both CPI and branch misprediction rate (Fig 13. & 11). Different benchmarks
responded differently to the increase in the PHT size. It can be observed that the integer
benchmarks respond more to the increase in the PHT size compared to the floating point
benchmarks. The floating point benchmarks have the least effect on the CPI for the increase
in the PHT size. This is because of the fact that the floating point benchmarks have lesser
number of branches and thus their behavior can be captured with a smaller PHT.

For instance, considering 435.gromacs, although there is a significant reduction in the
misprediction rate with an increase in the PHT size, there is not much improvement observed
in the CPI. After analyzing this benchmark, we found that 435.gromacs has only 2 percent
of the instructions as branches. So, improving the accuracy of branch predictor does not have
much effect on the CPI of the FP benchmarks. On the other hand, for the case of /45.gobmk
which is an integer benchmark, the improvement in misprediction rate shows a proportional
change in the CPI. This is expected since 445.gobmk has higher percentage of branches (15
percent) to the total instructions.
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Fig. 10. Dynamic branch predictor CPI
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5.2 Memory Characteristics

The memory hierarchy design is of paramount importance in modern superscalar processors
because of the performance loss due the Von Neumann bottleneck. It necessitates the need
to come up with the optimal cache design parameters, so that it is capable of hiding the
memory latencies efficiently. In this paper, we analyzed both the instruction and data level
I caches and tried to come up with the optimal design parameters.

For the purpose of analyzing the L1 caches, we varied both the cache size and the asso-
ciativity and compared the values of CPI and the miss ratios. We used the LRU replacement
policy for all our experiments which is given as one in specifying the configuraion of the
cache in the figures. From the graph in Fig. 15 & 16, it is evident that the effect of increasing
associativity has a prominent effect on the performance than just increasing the size of the
data cache. For some benchmarks like 445gobmk, increasing the associativity to 2 result in a
colossal reduction in the miss ratios, which can be attributed to smaller foot prints of these
benchmarks. Other benchmarks where associativity provided significant benefit are 456.hm-
mer, 458.sjeng and 482.sphinz3 in which case increasing the associativity to 2 resulted in
more than 50 percent reduction in miss ratio. However, some benchmarks like 473.astar and
450.soplex responded more to the size than associativity. It can be concluded that 475.astar
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Fig. 18. Missrate for IL1 configs in format name:no.sets:blk size:associativity&repl. policy

and 450.soplex has lot of sequential data and hence we cannot extract much benefit by in-
creasing the associativity. The CPIs of the benchmarks 462.libguantum and 433.milc neither
respond to the increase in the cache size nor to that in associativity. This may be due to a
smaller memory footprint of these benchmarks which can be captured completely by just a
small direct mapped cache.

The CPI and the miss ratios for different Level 1 instruction cache configurations are
shown in Fig. 17 and 18. As expected, the miss ratios of the instruction cache is much
lesser than that of the data cache because of the uniformity in the pattern of access to the
instruction cache. For some of the benchmarks like 473.astar, 456.hmmer, 435.gromacs, the
miss ratio is almost negligible and hence further increase in the cache size or associativity
does not have any effect on the performance. The performance benefit due to increase in
associativity compared to cache size in instruction cache is not as much as the data cache.
This is because of the fact that the instruction cache responds more to the increase in
the cache size to that of associativity because of high spatial locality in the references.
Considering the tradeoff between the performance and complexity, an associativity of two at
the instruction cache level seems to be optimal.

5.3 TLB Characteristics

Although designing the data cache is an important step in processor design, it has to be cou-
pled with an efficient TLB usage to achieve good performance. Choosing the TLB page size
is becoming critical in modern memory intensive workloads with large foot prints. This can





be attributed to the recent addition of features like multiple page sizes to modern operating
systems.

Using Simplescalar, we performed simulations on the SPEC 06 suite for different TLB
page sizes & associativities and observed the TLB miss ratio, which characterizes the part
of the CPI due to the time incurred in page translation.

First, we fixed the page size as 16KB and varied the associativity to see the corresponding
impact on miss ratios and CPI. As expected, the direct mapped TLB has performed worse
than the 2-way and 4-way TLBs as seen in Fig. 19 & 20. It looks like the improvement
in the performance from 2-way to 4-way is not much and is not worth the extra hardware
complexity required for the same. Thus, an associativity of two seems to be optimal for the
modern workloads. As we increased the TLB size from 16KB to 16MB, we found that the
change in associativity did not have any effect on the performance and this can be attributed
to the fact that a page size of 16MB is large enough to reduce the conflict misses to zero.

Second, we performed simulations with various page sizes for a 2-way associative TLB.
Our results as shown in Fig. 21 & 22 had a close match with that of the results specified in
[16] for a powerb processor. We found that large page sizes resulted in the least translation
misses, leading to a better CPI. Firstly, it can be observed that there is a reduction in
the TLB miss ratio around 30% for 471.omnetpp, 80% for 473.astar when the page size is
increased from 4KB to 16KB. There is a consistent improvement in the performance of all
the benchmarks for an increase in the page size. When a page size of 16MB is used, the TLB
misses reduces to nearly zero for most of the benchmarks except 445.gobmk and 450.soplex.
One possible cause for the increase in CPI for 445.gobmk and /50.soplex for a 16MB page size
could be due to serious wastage of memory caused due to internal fragmentation problems.
Other reasons could be having higher numbers of conflicts amongst the cache lines if the
virtual address bits used in cache tag matches are insufficiently distinct from each other
under larger sized TLB mappings.

CPI

m4-way OTLE
W 2-way DTLE
D Direct Mapped DTLE

Fig. 19. CPI for varying associativity with 16KB page sizes

6 Conclusion

The simulation points have proved to be an effective technique in reducing the simulation
time to a large extent without much loss of accuracy in the SPEC CPU2006 Suite. Using
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simulation points not only reduces the number of dynamic instructions to be simulated but
also makes the workload parallel, making them ideal for the current day parallel computers.

Further, simulating the different benchmarks with the different branch predictors, gave an
insight into understanding the branch behavior of modern workloads, which helped in coming
up with the best performing predictor configurations. We observed Gshare and the combined
(Bimodal & 2-level) to be the ideal predictors, predicting most of the branches to near
perfection. Looking at the effect of different cache parameters, it is observed that the design
of level-1 data cache parameters proves to be more important in affecting the CPI than that
of the instruction cache parameters. Instruction accesses, due to their inherent uniformity,
tends to miss less frequently, which makes the task of designing the Instruction cache much
easier. The line size of the Instruction cache seems to be the most important, while for the
data cache, both the line size and the associativity needs to be tailored appropriately to get
the best performance. The simulations for the different TLB configurations revealed that
usage of large page sizes significantly reduce the translation misses and aid in improving the
overall CPI of the modern workloads.
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Abstract

This paper describes the new features available in the SimPoint 3.0 release. The release
provides two techniques for drastically reducing the run-time of SimPoint: faster searching
to find the best clustering, and efficiently clustering large numbers of intervals. SimPoint
3.0 also provides an option to output only the simulation points that represent the majority
of execution, which can reduce simulation time without much increase in error. Finally,
this release provides support for correctly clustering variable length intervals, taking into
consideration the weight of each interval during clustering. This paper describes SimPoint
3.0’s new features, how to use them, and points out some common pitfalls.

1. Introduction

Modern computer architecture research requires understanding the cycle level behavior of
a processor during the execution of an application. To gain this understanding, researchers
typically employ detailed simulators that model each and every cycle. Unfortunately, this
level of detail comes at the cost of speed, and simulating the full execution of an industry
standard benchmark can take weeks or months to complete, even on the fastest of simulators.
To make matters worse, architecture researchers often simulate each benchmark over a
variety of architecture configurations and designs to find the set of features that provide the
best trade-off between performance, complexity, area, and power. For example, the same
program binary, with the exact same input, may be run hundreds or thousands of times
to examine how the effectiveness of an architecture changes with cache size. Researchers
need techniques to reduce the number of machine-months required to estimate the impact
of an architectural modification without introducing an unacceptable amount of error or
excessive simulator complexity.

At run-time, programs exhibit repetitive behaviors that change over time. These be-
havior patterns provide an opportunity to reduce simulation time. By identifying each of
the repetitive behaviors and then taking only a single sample of each repeating behavior,
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we can perform very fast and accurate sampling. All of these representative samples to-
gether represent the complete execution of the program. The underlying philosophy of
SimPoint [1, 2, 3, 4, 5, 6] is to use a program’s behavior patterns to guide sample selection.
SimPoint intelligently chooses a very small set of samples called Simulation Points that,
when simulated and weighed appropriately, provide an accurate picture of the complete ex-
ecution of the program. Simulating only these carefully chosen simulation points can save
hours to days of simulation time with very low error rates. The goal is to run SimPoint once
for a binary/input combination, and then use these simulation points over and over again
(potentially for thousands of simulations) when performing a design space exploration.

This paper describes the new SimPoint 3.0 release. In Section 2 we present an overview
of the SimPoint approach. Section 4 describes the new SimPoint features, and describes how
and when to tune these parameters. It also provides a summary of SimPoint’s results and
discusses some suggested configurations. Section 5 discusses the common pitfalls to watch
for when using SimPoint, and Section 6 summarizes this paper. Finally, the appendix
describes in detail the command line options for SimPoint 3.0.

The major new features for the SimPoint 3.0 release include:

e Efficient searching to find the best clustering. Instead of trying every value,
or every Nth value, of & when running the k-means algorithm, we provide a binary
search method for choosing k. This typically reduces the execution time of SimPoint
by a factor of 10.

e Faster SimPoint analysis when processing many intervals. To speed the
execution of SimPoint on very large inputs (100s of thousands to millions of intervals),
we sub-sample the set of intervals that will be clustered. After clustering, the intervals
not selected for clustering are assigned to phases based on their nearest cluster.

e Support for Variable Length Intervals. Prior versions of SimPoint assumed
fixed length intervals, where each interval represents the same amount of dynamic
execution. For example, in the past, each interval represented 1, 10, or 100 million
dynamic instructions. SimPoint 3.0 provides support for clustering variable length
intervals, where each interval can represent different amounts of dynamic execution.
With variable length intervals, the weight of each interval must be considered during
clustering.

e Reduce the number of simulation points by representing only the majority
of executed instructions. We provide an option to output only the simulation
points whose clusters account for the majority of execution. This reduces simulation
time, without much increase in error.

2. Background

Several other researchers have worked on phase analysis, and we review some of the related
work here.
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2.1 Related Work on Phase Analysis

The recurring use of different areas of memory in a program is first noted by Denning
and Schwarz [7] and is formalized as the idea of working sets. While working sets have
driven the development of caches for decades, recently many of the more subtle implica-
tions of recurring behaviors have been explored by researchers in the computer architecture
community.

Balasubramonian et al. [8] proposed using hardware counters to collect miss rates, CPI
and branch frequency information for every 100,000 instructions. They use these miss rates
and the total number of branches executed for each interval to dynamically evaluate the
program’s stability. They used their approach to guide dynamic cache reconfiguration to
save energy without sacrificing performance.

Dhodapkar and Smith [9, 10, 11] found a relationship between phases and instruction
working sets, and show that phase changes occur when the working set changes. They
proposed a method by which the dynamic reconfiguration of multi-configuration units can
be controlled in response to phase changes indicated by working set changes. Through a
working set analysis of the instruction cache, data cache and branch predictor they derive
methods to save energy.

Hind et al. [12] provide a framework for defining and reasoning about program phase
classifications, focusing on how to best define granularity and similarity to perform phase
analysis.

Isci and Martonosi [13, 14] have shown the ability to dynamically identify the power
phase behavior using power vectors. Deusterwald et al. [15] recently used hardware counters
and other phase prediction architectures to find phase behavior.

These related methods offer alternative techniques for representing programs for the
purpose of finding phase behaviors. They each also offer methods for using the data to find
phases. Our work on SimPoint frames the problem as a clustering problem in the machine
learning setting, using data clustering algorithms to find related program behaviors. This
problem is a natural application of data clustering, and works well.

2.2 Phase Vocabulary

To ground our discussion in a common vocabulary, the following is a list of definitions we
use to describe the analysis performed by SimPoint.

e Interval - A section of continuous execution (a slice in time) of a program. All intervals
are assumed to be non-overlapping, so to perform our analysis we break a program’s
execution into contiguous non-overlapping intervals. The prior versions of SimPoint
required all intervals to be the same size, as measured in the number of instructions
committed within an interval (e.g., interval sizes of 1, 10, or 100 million instructions
were used in [3]). SimPoint 3.0 still supports fixed length intervals, but also provides
support for Variable Length Intervals (VLI), which allows the intervals to account for
different amounts of executed instructions as described in [16].

e Phase - A set of intervals within a program’s execution with similar behavior. A phase
can consist of intervals that are not temporally contiguous, so a phase can re-appear
many times throughout execution.
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e Similarity - Similarity defines how close the behavior of two intervals are to one another
as measured across some set of metrics. Well-formed phases should have intervals with
similar behavior across various architecture metrics (e.g. IPC, cache misses, branch
misprediction).

e Frequency Vector - Each interval is represented by a frequency vector, which represents
the program’s execution during that interval. The most commonly used frequency
vector is the basic block vector [1], which represents how many times each basic block
is executed in an interval. Frequency vectors can also be used to track other code
structures [5] such as all branch edges, loops, procedures, registers, opcodes, data, or
program working set behavior [17] as long as tracking usage of the structure provides
a signature of the program’s behavior.

e Similarity Metric - Similarity between two intervals is calculated by taking the dis-
tance between the corresponding frequency vectors from the two intervals. SimPoint
determines similarity by calculating the Fuclidean distance between the two vectors.

e Phase Classification - Phase classification groups intervals into phases with similar
behavior, based on a similarity metric. Phase classifications are specific to a program
binary running a particular input (a binary/input pair).

2.3 Similarity Metric - Distance Between Code Signatures

SimPoint represents intervals with frequency vectors. A frequency vector is a one dimen-
sional array, where each element in the array tracks usage of some way to represent the
program’s behavior. We focus on code structures, but a frequency vector can consist of any
structure (e.g., data working sets, data stride access patterns [5, 17]) that may provide a
signature of the program’s behavior. A frequency vector is collected from each interval. At
the beginning of each interval we start with a frequency vector containing all zeros, and as
the program executes, we update the current frequency vector as structures are used.

A common frequency vector we have used is a list of static basic blocks [1] (called a
Basic Block Vector (BBV)). If we are tracking basic block usage with frequency vectors,
we count the number of times each basic block in the program has been entered in the
current interval, and we record that count in the frequency vector, weighted by the number
of instructions in the basic block. Each element in the frequency vector is a count of how
many times the corresponding basic block has been entered in the corresponding interval
of execution, multiplied by the number of instructions in that basic block.

We use basic block vectors (BBV) for the results in this paper. The intuition behind
this is that the behavior of the program at a given time is directly related to the code
executed during that interval [1]. We use the basic block vectors as signatures for each
interval of execution: each vector tells us what portions of code are executed, and how
frequently those portions of code are executed. By comparing the BBVs of two intervals,
we can evaluate the similarity of the two intervals. If two intervals have similar BBVs,
then the two intervals spend about the same amount of time in roughly the same code, and
therefore we expect the behavior of those two intervals to be similar. Prior work showed
that loop and procedure vectors can also be used, where each entry represents the number
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of times a loop or procedure was executed, performs comparably to basic block vectors [5],
while using fewer dimensions.

To compare two frequency vectors, SimPoint 3.0 uses the Euclidean distance, which
has been shown to be effective for off-line phase analysis [2, 3]. The Euclidean distance is
calculated by viewing each vector as a point in D-dimensional space, and calculating the
straight-line distance between the two points.

2.4 Using k-Means for Phase Classification

Clustering divides a set of points into groups, or clusters, such that points within each
cluster are similar to one another (by some metric, usually distance), and points in different
clusters are different from one another. The k-means algorithm [18] is an efficient and well-
known clustering algorithm which we use to quickly and accurately split program behavior
into phases. The k in k-means refers to the number of clusters (phases) the algorithm will
search for.

The following steps summarize the phase clustering algorithm at a high level. We refer
the interested reader to [2] for a more detailed description of each step.

1. Profile the program by dividing the program’s execution into contiguous intervals,
and record a frequency vector for each interval. Each frequency vector is normalized
so that the sum of all the elements equals 1.

2. Reduce the dimensionality of the frequency vector data to a smaller number of di-
mensions using random linear projection.

3. Run the k-means clustering algorithm on the reduced-dimension data for a set of k
values.

4. Choose from among these different clusterings a well-formed clustering that also has
a small number of clusters. To compare and evaluate the different clusters formed
for different values of k, we use the Bayesian Information Criterion (BIC) [19] as a
measure of the “goodness of fit” of a clustering to a dataset. We choose the clustering
with the smallest k, such that its BIC score is close to the best score that has been
seen. Here “close” means it is above some percentage of the range of scores that have
been seen. The chosen clustering represents our final grouping of intervals into phases.

5. The final step is to select the simulation points for the chosen clustering. For each
cluster (phase), we choose one representative interval that will be simulated in detail
to represent the behavior of the whole cluster. By simulating only one representative
interval per phase we can extrapolate and capture the behavior of the entire program.
To choose a representative, SimPoint picks the interval in each cluster that is closest
to the centroid (center) of each cluster. Each simulation point also has an associated
weight, which reflects the fraction of executed instructions that cluster represents.

6. With the weights and the detailed simulation results of each simulation point, we
compute a weighted average for the architecture metric of interest (CPI, miss rate,
etc.). This weighted average of the simulation points gives an accurate representation
of the complete execution of the program/input pair.
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I Cache 16k 2-way set-associative, 32 byte blocks, 1 cycle latency
D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency
L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency

Main Memory | 150 cycle latency
Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal

predictor

0-0-0 Issue out-of-order issue of up to 8 operations per cycle, 128 entry re-order
buffer

Mem Disambig | load/store queue, loads may execute when all prior store addresses
are known

Registers 32 integer, 32 floating point

Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integer

MULT/DIV, 2-FP MULT/DIV
Virtual Mem 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued
instructions complete

Table 1: Baseline Simulation Model.

3. Methodology

We performed our analysis for the complete set of SPEC2000 programs for multiple inputs
using the Alpha binaries on the SimpleScalar website. We collect all of the frequency vector
profiles (basic block vectors) using SimpleScalar [20]. To generate our baseline fixed length
interval results, all programs were executed from start to completion using SimpleScalar.
The baseline microarchitecture model is detailed in Table 1.

To examine the accuracy of our approach we provide results in terms of CPI error and
k-means variance. CPI error is the percent error in CPI between using simulation points
from SimPoint and the baseline CPI of the complete execution of the program.

The k-means variance is the average squared distance between every vector and its
closest center. Lower variances are better. When sub-sampling, we still report the variance
based on every vector (not just the sub-sampled ones). The relative k-means variance
reported in the experiments is measured on a per-input basis as the ratio of the k-means
variance observed for clustering on a sample to the k-means variance observed for clustering
on the whole input.

4. SimPoint 3.0 Features

In this section we describe and analyze the SimPoint features that affect the running time
of the SimPoint algorithm, and the resulting simulation time and accuracy of the simulation
points.

4.1 Choosing an Interval Size

When using SimPoint one of the first decisions to make is the interval size. The interval
size along with the number of simulation points chosen by SimPoint will determine the
simulation time of a binary/input combination. Larger intervals allow more aggregation
of profile information, allowing SimPoint to search for large scale repeating behavior. In
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comparison, smaller intervals allow for more fine-grained representations and searching for
smaller scale repeating behavior.

The interval size affects the number of simulation points; with smaller intervals more
simulation points are needed than when using larger intervals to represent the same pro-
portion of a program. We showed that using smaller interval sizes (1 million or 10 million)
results in high accuracy with reasonable simulation limits [3]. The disadvantage is that with
smaller interval sizes warmup becomes more of an issue, but there are efficient techniques
to address warmup as discussed in [21, 22]. In comparison, warmup is not really an issue
with larger interval sizes, and this may be preferred for some simulation environments [23].
For all of the results in this paper we use an interval size of 10 million instructions.

4.1.1 SUPPORT FOR VARIABLE LENGTH INTERVALS

Ideally we should align interval boundaries with the code structure of a program. In [24],
we examine an algorithm to produce variable length intervals aligned with the procedure
call, return and loop transition boundaries found in code. A Variable Length Interval (VLI)
is represented by a frequency vector as before, but each interval’s frequency vector can
account for different amounts of the program’s execution.

To be able to pick simulation points with these VLIs, we need to change the way we do
our SimPoint clustering to include the different weights for these intervals. SimPoint 3.0
supports VLIs, and all of the detailed changes are described in [16]. At a high level the
changes focused around the following three parts of the SimPoint algorithm:

e Computing k-means cluster centers — With variable length intervals, we want the k-
means cluster centers to represent the centroid of the intervals in the cluster, based
on the weights of each interval. Thus k-means must include the interval weights when
calculating the cluster’s center. This is an important modification to allow k-means
to better model those intervals that represent a larger proportion of the program.

e Choosing the Best Clustering with the BIC — The BIC criterion is the log-likelihood of
the clustering of the data, minus a complexity penalty. The likelihood calculation sums
a contribution from each interval, so larger intervals should have greater influence, and
we modify the calculation to include the weights of the intervals. This modification
does not change the BIC calculated for fixed-length intervals.

e Computing cluster centers for choosing the simulation points — Similar to the above,
the centroids should be weighted by how much execution each interval in the cluster
accounts for.

When using VLIs, the format of the frequency vector files is the same as before. A user
can either allow SimPoint to determine the weight of each interval or specify the weights
themselves (see the options in the Appendix). If the user allows SimPoint to determine the
weights automatically, SimPoint will assign the weights from the frequency vector counts.
For example, if one frequency vector summed to 100, and another summed to 200, then
the second would have twice as much weight as the first. However, the default behavior of
SimPoint is to assume fixed-length vectors, and give all vectors equal weight.
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4.2 Methods for Reducing the Run-Time of K-Means

Even though SimPoint only needs to be run once per binary/input combination, we still
want a fast clustering algorithm that produces accurate simulation points. To address the
run-time of SimPoint, we first look at three options that can greatly affect the running time
of a single run of k-means. The three options are the number of intervals to cluster, the
size (dimension) of the intervals being clustered, and the number of iterations it takes to
perform a clustering.

To start we first examine how the number of intervals affects the running time of the
SimPoint algorithm. Figure 1 shows the time in seconds for running SimPoint varying
the number of intervals (vectors) as we vary the number of clusters (value of k). For this
experiment, the interval vectors are randomly generated from uniformly random noise in
15 dimensions.

The results show that as the number of vectors and clusters increases, so does the
amount of time required to cluster the data. The first graphs show that for 100,000 vectors
and k = 128, it took about 3.5 minutes for SimPoint 3.0 to perform the clustering. It is
clear that the number of vectors clustered and the value of £ both have a large effect on
the run-time of SimPoint. The run-time changes linearly with the number of clusters and
the number of vectors. Also, we can see that dividing the time by the multiplication of the
number of iterations, clusters, and vectors to provide the time per basic operation continues
to give improving performance for larger k.

4.2.1 NUMBER OF INTERVALS AND SUB-SAMPLING

The k-means algorithm is fast: each iteration has run-time that is linear in the number of
clusters, and the dimensionality. However, since k-means is an iterative algorithm, many
iterations may be required to reach convergence. We already found in prior work [2], and
revisit in Section 4.2.2 that we can reduce the number of dimensions down to 15 and still
maintain the SimPoint’s clustering accuracy. Therefore, the main influence on execution
time for SimPoint is the number of intervals.

To show this effect, Table 2 shows the SimPoint running time for gcc-166 and crafty-ref,
which are at the lower and upper ranges for the number of intervals and basic block vectors
seen in SPEC 2000 with an interval size of 10 million instructions. The second and third
column shows the number of intervals (vectors) and the original number of dimensions for
each vector (these are projected down to 15 dimensions when performing the clustering).
The last three columns show the time it took to execute SimPoint searching for the best
clustering from k=1 to 100, with 5 random initializations (seeds) per k. SP2 is the time it
took for SimPoint 2.0. The second to last column shows the time it took to run SimPoint
3.0 when searching over all k£ in the same manner as SimPoint 2.0, and the last column
shows the clustering time when using our new binary search described in Section 4.4.3. The
results show that increasing the number of intervals by 4 times increased the running time
of SimPoint around 10 times. The results show that we significantly reduced the running
time for SimPoint 3.0, and that combined with the new binary search functionality results
in 10x to 50x faster choosing of simulation points over SimPoint 2.0. The results also show
that the number of intervals clustered has a large impact on the running time of SimPoint,
since it can take many iterations to converge, which is the case for crafty.
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Figure 1: These plots show how varying the number of vectors and clusters affects the
amount of time required to cluster with SimPoint 3.0. For this experiment we
generated uniformly random data in 15 dimensions. The first plot shows total
time, the second plot shows the time normalized by the number of iterations
performed, and the third plot shows the time normalized by the number of oper-
ations performed. Both the number of vectors and the number of clusters have a
linear influence on the run-time of k-means.

The effect of the number of intervals on the running time of SimPoint becomes critical
when using very small interval sizes like 1 million instructions or smaller, where there
can be millions of intervals to cluster. To speed the execution of SimPoint on these very
large inputs, we sub-sample the set of intervals that will be clustered, and run k-means
on only this sample. We sample the vector dataset using weighted sampling for VLIs, and
uniform sampling for fixed-length vectors. The number of desired intervals is specified, and
then SimPoint chooses that many intervals (without replacement). The probability of each
interval being chosen is proportional to the weight of its interval (the number of dynamically
executed instructions it represents).

Sampling is common in clustering for datasets which are too large to fit in main mem-
ory [25, 26]. After clustering the dataset sample, we have a set of clusters with centroids. We
then make a single pass through the unclustered intervals and assign each to the cluster that
has the nearest center (centroid) to that interval. This then represents the final clustering
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Program | # Vecs x # B.B. SP2 | SP3-All | SP3-BinS
gce-166 4692 x 102038 | 41 min 9 min 3.5 min
crafty 19189 x 16970 | 577 min | 84 min | 10.7 min

Table 2: This table shows the running times (in minutes) by SimPoint 2.0 (SP2), SimPoint
3.0 without using binary search (SP3-All) and SimPoint 3.0 using binary search
(SP3-BinS). SimPoint is run searching for the best clustering from k=1 to 100,
uses 5 random seeds, and projects the vectors to 15 dimensions. The second
column shows how many vectors and the size of the vector (static basic blocks)
the programs have.

from which the simulation points are chosen. We originally examined using sub-sampling
for variable length intervals in [16]. When using VLIs we had millions of intervals, and had
to sub-sample 10,000 to 100,000 intervals for the clustering to achieve a reasonable running
time for SimPoint, while still providing very accurate simulation points.

The experiments shown in Figure 2 show the effects of sub-sampling across all the SPEC
2000 benchmarks using 10 million interval size, 30 clusters, 15 projected dimensions, and
sub-sampling sizes that used 1/8, 1/4, 1/2, and all of the vectors in each program. The first
two plots show the effects of sub-sampling on the CPI errors and k-means variance, both
of which degrade gracefully when smaller samples are used. The average SPEC INT and
SPEC FP results are shown.

As shown in the second graph of Figure 2, sub-sampling a program can result in k-means
finding a slightly less representative clustering, which results in higher k-means variance and
higher CPI errors, on average. Even so, when sub-sampling, we found in some cases that
it can reduce the k-means variance and/or CPI error (compared to using all the vectors),
because sub-sampling can remove unimportant outliers in the dataset that k-means may
be trying to fit. It is interesting to note the difference between floating point and integer
programs, as shown in the first two plots. It is not surprising that it is easier to achieve lower
CPI errors on floating point programs than on integer programs, as the first plot indicates.
In addition, the second plot suggests that floating point programs are also easier to cluster,
as we can do quite well even with only small samples. The third plot shows the effect of the
number of vectors on the running time of SimPoint. This plot shows the time required to
cluster the full run of all of the benchmark/input combinations and the three (1/8, 1/4 and
1/2) sub-sampled runs. In addition, we have fit a logarithmic curve with least-squares to
the points to give a rough idea of the growth of the run-time. The main variance in time,
when two different datasets with the same number of vectors are clustered, is due to the
number of k-means iterations required for the clustering to converge.

4.2.2 NUMBER OF DIMENSIONS AND RANDOM PROJECTION

Along with the number of vectors, the other most important aspect in the running time of
k-means is the number of dimensions used. In [2] we chose to use random linear projection
to reduce the dimension of the clustered data for SimPoint, which dramatically reduces
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Figure 2: These three plots show how sub-sampling before clustering affects the CPI errors,
k-means variance, and the run-time of SimPoint. The first plot shows the average
CPI error across the integer and floating-point SPEC benchmarks. The second
plot shows the average k-means clustering variance relative to clustering with all
the vectors. The last plot shows a scatter plot of the run-time to cluster the full
benchmarks and sub-sampled runs, and a logarithmic curve fit with least squares.

computational requirements while retaining the essential similarity information. SimPoint
allows the user to define the number of dimensions to project down to. We have found
that SimPoint’s default of 15 dimensions is adequate for SPEC 2000 applications as shown
in [2]. In that earlier work we looked at how much information or structure of frequency
vector data is preserved when projecting it down to varying dimensions. We did this by
observing how many clusters were present in the low-dimensional version. We noted that
at 15 dimensions, we were able to find most of the structure present in the data, but going
to even lower dimensions removed too much structure.

To examine random projection, Figure 3 shows the effect of changing the number of
projected dimensions on both the CPI error (left) and the run-time of SimPoint (right).
For this experiment, we varied the number of projected dimensions from 1 to 100. As the
number of dimensions increases, the time to cluster the vectors increases linearly, which is
expected. Note that the run-time also increases for very low dimensions, because the points
are more “crowded” and as a result k-means requires more iterations to converge.
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Figure 3: These two plots show the effects of changing the number of projected dimensions
when using SimPoint. The default number of projected dimensions SimPoint
uses is 15, but here we show results for 1 to 100 dimensions. The left plot shows
the average CPI error, and the right plot shows the average time relative to 100
dimensions. Both plots are averaged over all the SPEC 2000 benchmarks, for a
fixed k = 30 clusters.

It is expected that by using too few dimensions, not enough information is retained to
accurately cluster the data. This is reflected by the fact that the CPI errors increase rapidly
for very low dimensions. However, we can see that at 15 dimensions, the SimPoint default,
the CPI error is quite low, and using a higher number of dimensions does not improve it
significantly and requires more computation. Using too many dimensions is also a problem
in light of the well-known “curse of dimensionality” [27], which implies that as the number
of dimensions increase, the number of vectors that would be required to densely populate
that space grows exponentially. This means that higher dimensionality makes it more likely
that a clustering algorithm will converge to a poor solution. Therefore, it is wise to choose
a dimension that is low enough to allow a tight clustering, but not so low that important
information is lost.

4.2.3 NUMBER OF ITERATIONS NEEDED

The final aspect we examine for affecting the running time of the k-means algorithm is the
number of iterations it takes for a run to converge.

The k-means algorithm iterates either until it hits a user-specified maximum number of
iterations, or until it reaches a point where no further improvement is possible, whichever is
less. k-means is guaranteed to converge, and this is determined when the centroids no longer
change. In SimPoint, the default limit is 100 iterations, but this can easily be changed (and
can be turned off). More than 100 iterations may be required, especially if the number
of intervals is very large compared to the number of clusters. The interaction between
the number of intervals and the number of iterations required is the reason for the large
SimPoint running time for crafty-ref in Table 2.
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Figure 4: This plot shows the number of iterations required for 10 randomized initializations
of each benchmark, with 10-million interval vectors, k = 30, and 15 dimensions.
Note that only three program/inputs had a total of 5 runs that required more than
the default limit of 100 iterations, and these all converge within 160 iterations or
less.

For our results, we observed that only 1.1% of all runs on all SPEC 2000 benchmarks
reach the limit of 100 iterations. This experiment was with 10-million instruction inter-
vals, k=30, 15 dimensions, and with 10 random (seeds) initializations (runs) of k-means.
Figure 4 shows the number of iterations required for all runs in this experiment. Out of
all of the SPEC program and input combinations run, only crafty-ref, gzip-program,
perlbmk-splitmail had runs that had not converged by 100 iterations. The longest-
running clusterings for these programs reached convergence in 160, 126, and 101 iterations,
respectively.

4.3 MaxK and Controlling the Number of Simulation Points

The number of simulation points that SimPoint chooses has a direct effect on the simulation
time that will be required for those points. The maximum number of clusters, MaxK, along
with the interval size as discussed in Section 4.1, represents the maximum amount of simu-
lation time that will be needed. When fixed length intervals are used, Max K *interval_size
puts a limit on the instructions simulated.

SimPoint enables users to trade off simulation time with accuracy. Researchers in archi-
tecture tend to want to keep simulation time to below a fixed number of instructions (e.g.,
300 million) for a run. If this is desirable, we find that an interval size of 10M with MaxK=30
provides very good accuracy (as we show in this paper) with reasonable simulation time
(below 300 million and around 220 million instructions on average). If even more accuracy
is desired, then decreasing the interval size to 1 million and setting MaxK=300 or MaxK equal
to the square root of the total number of intervals: /n performs well. Empirically we
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discovered that as the granularity becomes finer, the number of phases discovered increases
at a sub-linear rate. The upper bound defined by this heuristic works well for the SPEC
2000 benchmarks.

Finally, if the only thing that matters to a user is accuracy, then if SimPoint chooses
a number of clusters that is close to the maximum allowed, then it is possible that the
maximum is too small to capture all of the unique behaviors. If this is the case and more
simulation time is acceptable, it is better to double the maximum £ and re-run the SimPoint
analysis.

4.3.1 CHOOSING SIMULATION POINTS TO REPRESENT THE TOP PERCENT OF
EXECUTION

One advantage to using SimPoint analysis is that each simulation point has an associated
weight, which tells how much of the original program’s execution is represented by the
cluster that simulation point represents. The simulation points can then be ranked in order
of importance. If simulation time is too costly, a user may not want to simulate simulation
points that have very small weights. SimPoint 3.0 allows the user to specify this explicitly
with the -coveragePct p option. When this option is specified, the value of p sets a
threshold for how much of the execution should be represented by the simulation points
that are reported in an extra set of files for the simulation points and weights. The default
is p = 1.0: that the entire execution should be represented.

For example, if p = 0.98 and the user has specified ~saveSimpoints and -saveWeights,
then SimPoint will report simulation points and associated weights for all the non-empty
clusters in two files, and also for the largest clusters which make up at least 98% of the
program’s weight. Using this reduced-coverage set of simulation points can potentially save
a lot of simulation time if there are many simulation points with very small weights without
severely affecting the accuracy of the analysis.

Figure 5 shows the effect of varying the percentage of coverage that SimPoint reports.
These experiments use binary search with MaxK=30, 15 dimensions, and 5 random seeds.
The left graph shows the CPI error and the right shows the number of simulation points
chosen when only representing the top 95%, 98%, 99% and 100% of execution. The three
bars show the maximum value, the second highest value (max-1), and the average. The
results show that when the coverage is reduced from 100%, the average number of simulation
points decreases, which reduces the simulation time required, but this is at the expense of
the CPI error, which goes up on average. For example, comparing 100% coverage to 95%,
the average number of simulation points is reduced from about 22 to about 16, which is a
reduction of about 36% in required simulation time for fixed-length vectors. At the same
time, the average CPI error increases from 1.5% to 2.8%. Depending on the user’s goal, a
practitioner can use these types of results to decide on the appropriate trade off between
simulation time and accuracy. Out of all of the SPEC binary/input pairs there was one
combination (represented by the maximum) that had a bad error rate for 95% and 98%.
This was ammp-ref, and the reason was that a simulation point was removed that had a
small weight (1-2% of the executed instructions) but its behavior was different enough to
affect the estimated CPI.
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Figure 5: These plots show the CPI error and number of simulation points picked across
different percent coverages of execution. For 100% coverage, all simulation points
are used, but for less than 100%, simulation points from the smallest clusters are
discarded, keeping enough simulation points to represent the desired coverage.
Bars labeled “max-1” show the second largest value observed.

Note, when using simulation points for an architecture design space exploration, the
CPI error compared to the baseline is not as important as making sure that this error is
consistent between the different architectures being examined. What is important is that
a consistent relative error is seen across the design space exploration, and SimPoint has
this consistent bias as shown in [3]. Ignoring a few simulation points using -coveragePct
p will create a consistent bias across the different architecture runs when compared to
complete simulation. This is because a small fraction of behavior will be ignored during
the design space exploration, but the same simulation points representing the top percent
of execution will be represented. This can be acceptable technique for reducing simulation
time, especially when performing large design space exploration trade-offs.

4.4 Searching for the Smallest k with Good Clustering

As described above, we suggest setting MaxK as appropriate for the maximum amount of
simulation time a user will tolerate for a given run. We then use three techniques to search
over the possible values of k, which we describe now. The goal is to try to pick a k that
reduces simulation time, but also provides an accurate picture of the program’s execution.

4.4.1 SETTING THE BIC PERCENTAGE

As we examine several clusterings and values of k, we need to have a method for choosing the
best clustering. The Bayesian Information Criterion (BIC) [19] gives a score of the goodness
of the clustering of a set of data. These BIC scores can then be used to compare different
clusterings of the same data. The BIC score is a penalized likelihood of the clustering of
the vectors, and can be considered the approximation of a probability. However, the BIC
score often increases as the number of clusters increase. Thus choosing the clustering with
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Figure 6: These plots show how the CPI error and number of simulation points chosen is
affected by varying the BIC threshold. Bars labeled “max-1” show the second
largest value observed.

the highest BIC score can lead to often selecting the clustering with the most clusters.
Therefore, we look at the range of BIC scores, and select the score which attains some high
percentage of this range. The SimPoint default BIC threshold is 0.9. When the BIC rises
and then levels off, this method chooses a clustering with the fewest clusters that is near
the maximum value. Choosing a lower BIC percent would prefer fewer clusters, but at the
risk of less accurate simulation.

Figure 6 shows the effect of changing the BIC threshold on both the CPI error (left)
and the number of simulation points chosen (right). These experiments are for using binary
search with MaxK=30, 15 dimensions, and 5 random seeds. BIC thresholds of 70%, 80%, 90%
and 100% are examined. As the BIC threshold decreases, the average number of simulation
points decreases, and similarly the average CPI error increases. At the 70% BIC threshold,
perlbmk-splitmail has the maximum CPI error in the SPEC suite. This is due to a
clustering that was picked at that threshold which has only 9 clusters. This anomaly is an
artifact of the looser threshold, and better BIC scores point to better clusterings and better
error rates, which is why we recommend the BIC threshold to be set at 90%.

4.4.2 VARYING THE NUMBER OF RANDOM SEEDS, AND k-MEANS INITIALIZATION

The k-means clustering algorithm is essentially a hill-climbing algorithm, which starts from
a randomized initialization, which requires a random seed. Because of this, running k-means
multiple times can produce very different results depending on the initializations. Some-
times this means k-means can converge to a locally-good solution that is poor compared to
the best clustering on the same data for that number of clusters. Therefore the conventional
suggests that it is good to run k-means several times using a different randomized starting
point each time, and take the best clustering observed, based on the k-means variance or the
BIC. SimPoint has the functionality to do this, using different random seeds to initialize
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Figure 7: This plot shows the average and maximum CPI errors for both sampling and
furthest-first k-means initializations, and using 1, 5, or 10 different random seeds.
These results are over the SPEC 2000 benchmark suite for 10-million instruction
vectors, 15 dimensions, and k = 30.

k-means each time. Based on our experience, we have found that using 5 random seeds
works well.

Figure 7 shows the effect on CPI error of using two different k-means initialization
methods (furthest-first and sampling) along with different numbers of initial k-means seeds.
These experiments are for using binary search with MaxK=30, 15 dimensions, and a BIC
threshold of .9. When multiple seeds are used, SimPoint runs k-means multiple times with
different starting conditions and takes the best result.

Based on these results we see that sampling outperforms furthest-first k-means initial-
ization. This can be attributed to the data we are clustering, which has a large number of
anomaly points. The furthest-first method is likely to pick those anomaly points as initial
centers since they are the furthest points apart. The sampling method randomly picks
points, which on average does better than the furthest-first method. It is also important
to try multiple seed initializations in order to avoid a locally minimal solution. The results
in Figure 7 shows that 5 seed initializations is sufficient for finding a good clustering, but
using 10 seeds did reduce the maximum error seen from 8% down to 5.5%.

4.4.3 BINARY SEARCH FOR PICKING k

SimPoint 3.0 makes it much faster to find the best clustering and simulation points for a
program trace over earlier versions. Since the BIC score generally increases as k increases,
SimPoint 3.0 uses this to perform a binary search for the best k. For example, if the
maximum k desired is 100, with earlier versions of SimPoint one might search in increments
of 5: kK =5,10,15,...,90, 100, requiring 20 clusterings. With the binary search method, we
can ignore large parts of the set of possible k£ values and examine only about 7 clusterings.

The binary search method first clusters 3 times: at £k = 1, & = max k, and k =
(max k + 1)/2. It then proceeds to divide the search space and cluster again based on the
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BIC scores observed for each clustering. The binary search may stop early if the window
of k values is relatively small compared to the maximum k value. Thus the binary search
method requires the user only to specify the maximum k value, and performs at most
log(max k) clusterings.

Figure 8 shows the comparison between the new binary search method for choosing
the best clustering, and searching all k values (as was done in SimPoint 2.0). The top
graph shows the CPI error for each program, and the bottom graph shows the number of
simulation points (clusters) chosen. These experiments are for using binary search with
MaxK=30, 15 dimensions, 5 random seeds, and a BIC threshold of .9. SimPoint All performs
slightly better than the binary search method, since it searches exhaustively through all k&
values for MaxK=30. Using the binary search, it is possible that it will not choose as small of
clustering as the exhaustive search. This is shown in the bottom graph of Figure 8, where
the exhaustive search picked 19 simulation points on average, and binary search chose 22
simulation points on average. In terms of CPI error rates, the average is about the same
across the SPEC programs between exhaustive and binary search.

5. Common Pitfalls

There are a few important potential pitfalls worth addressing to ensure accurate use of
SimPoint’s simulation points.

Setting MaxK Appropriately — MaxK must be set based on the interval size
used and the maximum number of instructions you are willing to simulate as described in
Section 4.3.

The maximum number of clusters and the interval size represent the maximum amount
of simulation time needed for the simulation points selected by SimPoint. Finding good
simulation points with SimPoint requires recognizing the tradeoff between accuracy and
simulation time. If a user wants to place a low limit on the number of clusters to limit
simulation time, SimPoint can still provide accurate results, but some intervals with differing
behaviors may be grouped together as a result. In such cases it may be advantageous to
increase MazK and with that use the option -coveragePct with a value less than 1 (e.g.
.98). This can allow different behaviors to be grouped into more clusters, but the final set
of simulation points can be smaller since only the most dominant behaviors will be chosen
for simulation points.

Off by One Interval Errors — SimPoint 3.0 starts counting intervals and cluster 1Ds
at 0. These are the counts and IDs written to a file by -saveSimpoints, where SimPoint
indicates which intervals have been selected as simulation points and their respective cluster
IDs. A common mistake may be to assume that SimPoint 3.0, like previous versions of
SimPoint, counts intervals starting from 1, instead of 0. Just remember that the first
interval of execution and the first cluster in SimPoint 3.0 are both numbered 0.

Reproducible Tracking of Intervals and Using Simulation Points — It is very
important to have a reproducible simulation environment for (a) creating interval vectors,
and (b) using the simulation points during simulation. If the instruction counts are not
stable between runs, then selection of intervals can be skewed, resulting in additional error.

SimPoint provides the interval number for each simulation point. Interval numbers
are zero-based, and are relative to the start of execution, not to the previous simulation
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Figure 8: These plots show the CPI error and number of simulation points chosen for two
different ways of searching for the best clustering. The first method, which was
used in SimPoint 2.0, is searching for All k£ between 1 and 30, and choosing the
smallest clustering that achieves the BIC threshold. The second method is the
binary search for MaxK=30, which examines at most 5 clusterings.

point. So for fixed-length intervals, to get the instruction count at the start of a simulation
point, just multiply the interval number by the interval size, but watch out for Interval
Drift described later. For example, interval number 15 with an interval size of 10 million
instructions means that the simulation point starts when 150 million (15*10M) correct path
instructions have been fetched. Detailed simulation of this simulation point would occur
from instruction 150 million until just before 160 million.

One way to get more reproducible results is to use the first instruction program counter
(Start PC) that occurs at the start of each interval of execution, instead of relying on
instruction count. The same program counter can reappear many times, so it is also neces-
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sary to keep track of how many times a program counter value must appear to indicate the
start of an interval of execution. For example, if a simulation point is triggered when PC
0x12000340 is executed the 1000th time. Then detailed simulation starts after that PC is
seen 1000 times, and simulation occurs for the length of the interval. For this to work, the
user needs to profile PCs in parallel with the frequency vector profile, and record the first
PC seen for each interval along with the number of times that PC has executed up to that
point in the execution. SimPoint provides the interval chosen for a simulation point, and
this data can easily be mapped to this PC profile to determine the Start PC and the Nth
occurrence of it where simulation should start.

It is highly recommended that you use the simulation point Start PCs for performing
simulations. There are two reasons for this. The first reason deals with making sure you
calculate the instructions during fast-forwarding exactly the same as when the simulation
points were gathered. The second reason is that there can be slight variations in execu-
tion count between different runs of the same binary/input due to subtle changes in the
simulation environment. Both of these are discussed in more detail later in this section.

Note, if you use the Start PC and its invocation count you need to make sure that the
binary and any shared libraries used are loaded into the same address locations across all
of your simulation runs for this to work. In general, this is important for any simulation
study, in order to ensure that there are consistent address streams (instruction and global
data) seen across the different runs of a program/input pair.

Interval “Drift” — When creating intervals, a problem may occur that the counts
inside an interval might be just slightly larger than the interval size. Over time these counts
can add up, so that if you were to try to find a particular fixed length interval in a simulation
environment different from where the intervals were generated, you might be off by a few
intervals.

For example, this can occur when forming fixed length intervals of X instructions. After
X instructions execute the interval should be created, but this boundary may occur in the
middle of a basic block, where there are an additional Y instructions in the basic block
over the interval size. A frequency vector profiler that has the problem of interval drift
may naively include these additional Y instructions in the interval that was just completed,
especially if it was just counting basic blocks. Even though Y may be extremely small, it
will accumulate over many thousands of intervals and cause a slow “drift” in the interval
endpoints in terms of instruction count.

This is mainly a problem if you use executed instructions to determine the starting
location for a simulation point. If you have drift in your intervals, to calculate the starting
instruction count, you cannot just multiply the simulation point by the fixed length interval
size as described above, since the interval lengths are not exactly the same. This can
result in simulating the wrong set of instructions for the simulation point. When using
the instruction count for the start of the simulation point, you need to keep track of the
total instruction count for each interval if you have interval drift. You can then calculate
the instruction count starting location for a simulation point by summing up the exact
instruction counts for all of the intervals up to the interval chosen as the simulation point.

A better solution is to just make sure there is no drift at all in your intervals, but ending
them precisely at the interval size boundary. In our above example, instead of including
Y extra instructions in the interval that just ended, those extra Y instructions should be
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counted toward their basic block in the next interval. This results in splitting the basic
block counts, for the basic blocks that occur on an interval boundary.

Accurate Instruction Counts (No-ops) — It is important to count instructions
exactly the same for the frequency vector profiles as for the detailed simulation, otherwise
they will diverge. Note that the simulation points on the SimPoint website include only
correct path instructions and the instruction counts include no-ops. Therefore, to reach
these simulation points in a simulator, every committed (correct path) instruction (including
no-ops) must be counted.

System Call Effects — Some users have reported system call effects when running the
same simulation points under slightly different OS configurations on a cluster of machines.
This can result in slightly more or fewer instructions being executed to get to the same
point in the program’s execution, and if the number of instructions executed is used to find
the simulation point, this may lead to variations in the results. To avoid this, we suggest
using the Start PC and Execution Count for each simulation point as described above.
Another way to avoid variations in startup is to use checkpointing [22], and to use the
SimpleScalar EIO files to make sure the system calls are the same between all simulated
runs of a program/input combinations.

Calculating Weighted IPC — For IPC (instructions/cycle) we cannot just apply the
weights directly as is done for CPI. Instead, we must convert all the simulated samples to
CPI, compute the weighted average of CPI, and then convert the result back to IPC.

Calculating Weighted Miss Rates — To compute an overall miss rate (e.g. cache
miss rate), first we must calculate both the weighted average of the number of cache accesses,
and the weighted average of the number of cache misses. Dividing the second number by the
first gives the estimated cache miss rate. In general, care must be taken when dealing with
any ratio because both the numerator and the denominator must be averaged separately
and then divided.

Number of intervals — There should be a sufficient number of intervals for the clus-
tering algorithm to choose from. A good rule of thumb is to make sure to use at least 1,000
intervals in order for the clustering algorithm to be able to find a good partition of the
intervals. If there are too few intervals, one can decrease the interval size to obtain more
intervals for clustering.

Using SimPoint 2.0 with VLIs — As described in Section 4.1.1, SimPoint 2.0 assumes
fixed-length intervals, and should not be used if the vectors to be clustered are variable
length. The problem with using VLIs with SimPoint 2.0 is that the data will be clustered
with a uniform weight distribution across all intervals, which is not correct for representing
the execution properly. This means that the centroids may not be representative of the
program’s execution in a cluster. This can result in large error rates, since a vector that is
not representative of the majority of the cluster could be chosen as the simulation point.

Wanting Variable Length, but not asking for it — If you want variable length
weighting for each interval then you need to use the -fixedLength off option. You may
need to also use -loadVectorWeights if your vector weights cannot be automatically cal-
culated from the vector’s frequency count values.
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6. Summary

Modern computer architecture research depends on understanding the cycle level behavior
of a processor running an application, and gaining this understanding can be done efficiently
by judiciously applying detailed cycle level simulation to only a few simulation points. The
level of detail provided by cycle level simulation comes at the cost of simulation speed, but
by targeting only one or a few carefully chosen samples for each of the small number of
behaviors found in real programs, this cost can be reduced to a reasonable level.

The main idea behind SimPoint is the realization that programs typically only exhibit
a few unique behaviors which are interleaved with one another through time. By finding
these behaviors and then determining the relative importance of each one, we can maintain
both a high level picture of the program’s execution and at the same time quantify the
cycle level interaction between the application and the architecture. The key to being able
to find these phases in a efficient and robust manner is the development of a metric that
can capture the underlying shifts in a program’s execution that result in the changes in
observed behavior. SimPoint uses frequency vectors to calculate code similarity to cluster
a program’s execution into phases.

SimPoint 3.0 automates the process of picking simulation points using an off-line phase
classification algorithm, which significantly reduces the amount of simulation time required.
These goals are met by simulating only a handful of intelligently picked behaviors of the
full program. When these simulation points are carefully chosen, they provide an accurate
picture of the complete execution of a program, which gives a highly accurate estimation
of performance. This release provides new features for reducing the run-time of SimPoint
and simulation points required, and provides support for variable length intervals. The
SimPoint software can be downloaded at:

http://www.cse.ucsd.edu/users/calder/simpoint/
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Appendix A: Command Line Options

Clustering and projection options:

e -k regex: This specifies which values of k should be searched. The regular expression
is

regex := "search" | R(,R)*
R := k | start:end | start:step:end

Search means that SimPoint should search using a binary search between 1 and the
user-specified maxK. The -maxK option must be set for search. Searching is the default
behavior. If the user chooses not to use search, they may specify one or more comma-
separated ranges of positive integers for k. The argument k specifies a single k value,
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the range start:end indicates that all integers from start to end (inclusive) should
be used, and the range start:step:end indicates that SimPoint should use values
starting at start and stepping by interval step until reaching end. Here is an example
of specifying specific values with the regular expression: -k 4:6,10,12,30:15:75,
which represents searching the k£ values 4,5,6,10,12,30,45,60,75.

-maxK k: When using the “search” clustering method (see -k option), this command
line option must be provided. It specifies the maximum number of clusters that
SimPoint should use.

-fixedLength "on" | "off": Specifies whether the frequency vectors that are loaded
should be treated as fixed-length vectors (which means having equal weights), or VLI
vectors. The default is on. When off, if no weights are loaded (using -loadVectorWeights)
then the weight of each interval is determined by summing up all the frequency counts

in the vector for an interval and dividing this by the total frequency count over all
intervals.

-bicThreshold t: SimPoint finds the highest and lowest BIC scores for all examined
clusterings, and then chooses the one with the smallest & which has a BIC score greater
than t*(max_score-min_score)+min_score. The default value for t is 0.9.

-dim d | "noProject": d is the number of dimensions down to which SimPoint
should randomly project the un-projected frequency vectors. If the string “noProject”
is instead given, then no projection will be done on the data. If the ~dim option is not
specified at all, then a default is 15 dimensions is used. This option does not apply
when loading data from a pre-projected vector file using options ~loadVectorsTxtFmt
or -loadVectorsBinFmt.

-seedproj seed: The random number seed for random projection. The default is
2042712918. This can be changed to any integer for different random projections.

-initkm "samp" | "ff": The type of k-means initialization (sampling or furthest-
first). The default is "samp". Sampling chooses k different vectors from the program
at random as the initial cluster centers. Furthest-first chooses a random vector as the
first cluster center, then repeats the following k — 1 times: find the closest center to
each vector, and choose as the next new center the vector which is furthest from its
closest center.

-seedkm seed: The random number seed for k-means initialization (see -initkm).
The default is 493575226. This can be changed to any integer to obtain different
k-means initializations, and using the same seed across runs will provide reproducible
initializations.

-numInitSeeds n: The number of random initializations to try for clustering each k.
For each k, the dataset is clustered num times using different k-means initializations
(the k-means initialization seed is changed for each initialization). Of all the num runs,
only the best (the one with the highest BIC score) is kept. The default is 5.
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e —iters n | "off": The maximum number of k-means iterations per clustering. The
default is 100, but the algorithm often converges and stops much earlier. If ”off” is
instead chosen, then k-means will terminate once it has converged. In running all of
the SPEC programs with all of their inputs using the default parameters to SimPoint
3.0 only 1.1% of all runs did not converge by 100 iterations. Clearly, the default
number of iterations is usually sufficient, but can be increased if SimPoint is often
reaching the limit.

e -verbose level: The amount of output that SimPoint should produce. The argu-
ment level is a non-negative integer, where larger values indicate more output. The
default is 0, which is the minimum amount of output.

Sampling options:

e -sampleSize n: The number of frequency vectors (intervals) to randomly sample
before clustering with k-means. Using a smaller number of vectors allows k-means to
run faster, at a small cost in accuracy. The vectors are sampled without replacement,
so each vector can be sampled only once. For VLI vectors, vectors are chosen with
probability proportional to how much of the execution they represent. The default is
to use all vectors for clustering.

e -seedsample seed: The random number seed for vector sampling. The default is
385089224. This can be changed to any integer for different samples.

Load options:

e -loadFVFile file: Specifies an unprojected sparse-format frequency vector (FV) file
of all of the intervals. Either this argument, -loadVectorsTxtFmt, or ~loadVectorsBinFmt
must always be present to provide SimPoint with the frequency vectors that should
be analyzed.

e —numFVs n, -FVDim n: These two options together specify the number of frequency
vectors and maximum number of dimensions in the unprojected frequency vector file
so the file doesn’t need to be parsed twice (both options must be used together).

e -loadVectorsTxtFmt file: Specifies an already-projected text vector file (saved with
-saveVectorsTxtFmt). When loaded this way, SimPoint does not use random pro-
jection or otherwise change the vectors.

e -loadVectorsBinFmt file: Specifies an already-projected binary vector file (saved
with -saveVectorsBinFmt). This is the binary-format version of ~-loadVectorsTxtFmt.
This option provides the fastest way to load a dataset.

e -inputVectorsGzipped: When present, this option specifies that the input vec-
tors given by -loadFVFile, -loadVectorsTxtFmt, or ~loadVectorsBinFmt are com-
pressed with gzip compression, and should be decompressed while reading.
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| Option | Default Value |
-k “search”
-initkm “samp”
-numInitSeeds 5
-bicThreshold 0.9
-fixedLength “on”
-dim 15
-iters 100
-sampleSize no sub-sampling
-coveragePct 1 (100%)

Table 3: This table gives the standard options that are used with SimPoint and their
default values. For every run of SimPoint, the frequency vectors must be pro-
vided as an unprojected frequency vector file, or a pre-projected data file given
via ~loadVectorsTxtFmt or ~loadVectorsBinFmt. When using the -k "search"
method, -maxK must always be provided.

e -loadInitCtrs file: Specifies initial centers for clustering (rather than allowing
SimPoint to choose the initial centers with furthest-first or sampling). These centers
are points in the same dimension as the projected frequency vectors, but they are not
necessarily actual frequency vectors. This option is incompatible with using multiple
values of k; only the k corresponding to the number of centers in the given file will
be run. This is useful if you want to specify the exact starting centers to perform a
clustering.

e -loadInitLabels file: Specifies the labels that will be used to form initial clus-
ters (rather than allowing SimPoint to choose with furthest-first or sampling). Like
-loadInitCtrs, this option is incompatible with multiple k£ values. This is used if
you want to specify the initial starting clusters to perform a clustering based on a set
of labels. In doing this, the new starting centers will be formed from these labels and
clustering iterations will proceed from there.

e -loadProjMatrixTxtFmt file: Specifies a text projection matrix to use to project the
unprojected frequency vector file (saved from a previous run with -saveProjMatrixTxtFmt),
rather than allowing SimPoint to choose a random projection matrix. This option also
allows users to specify their own projection matrix.

e -loadProjMatrixBinFmt file: Specifies a binary projection matrix to use to project
the unprojected frequency vector file. This is the binary version of ~1loadProjMatrixTxtFmt.

e -loadVectorWeights file: Specifies a text file that contains the weights that should
be applied to the frequency vectors. The weights should all be non-negative, and their
sum should be positive.

Save options:
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e -saveSimpoints file: Saves a file of the vectors chosen as Simulation Points and
their corresponding cluster numbers. Frequency vectors are numbered starting at 0,
which means the first vector in the execution has an index of 0. Note that earlier
versions of SimPoint started numbering vectors from 1.

e —saveSimpointWeights file: Saves a file containing a weight for each Simulation
Point, and its corresponding cluster number. The weight is the proportion of the
program’s execution that the Simulation Point represents.

e —saveVectorWeights file: Saves a file with a weight for each frequency vector
as computed by SimPoint. The weight of a vector is the proportion that vector
represents of the all of the vectors provided. When using VLIs (and the option
-fixedLength off, this is calculated for a vector by taking the total value of all
of the entries in a vector divided by the total value of all of the entries in all vectors.
The weights are also stored in projected vector files saved with ~saveVectorsTxtFmt
and -saveVectorsBinFmt, so this option is not necessary for just saving and loading
projected data.

e -saveAll: When this option is not specified, SimPoint only saves specified outputs
for the best clustering found (according to the BIC threshold). When this option
is specified, SimPoint will save the specified outputs for all k& values clustered. This
option only affects saving labels, simulation point weights, simulation points, initial
centers, and final centers.

e —coveragePct p: This option tells SimPoint to save additional simulation points and
weights that belong to the largest clusters that together make up at least p proportion
of the vector weights for the entire program. The range of p is between 0 and 1; the
default is 1. For example, .98 means to output the smallest number of simulation
points to account for at least 98% of execution (vectors). This option only affects
the saving of simulation points and simulation point weights as a special coverage
percentage result. The simulation points and associated weights for all clusters will
also be saved as usual.

e -saveVectorsTxtFmt file: Specifies the file in which to save a text version of the
projected frequency vectors to enable faster loading later. See ~loadVectorsTxtFmt.

e -saveVectorsBinFmt file: Specifies the file in which to save a binary version of the
projected frequency vectors to enable faster loading later. See ~loadVectorsBinFmt.

e —saveProjMatrixTxtFmt file: Specifies the file in which to save a text version of
the projection matrix so it may be re-used. See -loadProjMatrixTxtFmt.

e —saveProjMatrixBinFmt file: Specifies the file in which to save a binary version of
the projection matrix so it may be re-used. See -loadProjMatrixBinFmt.

e -savelnitCtrs file: Specifies the file in which to save the initial cluster centers.
e -saveFinalCtrs file: Specifies the file in which to save the final cluster centers

found by k-means.
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e -savelabels file: Specifies the file in which to save the final label and distance

from cluster center for each clustered vector.

Table 3 shows all of the default values and required options for running SimPoint. The

two required parameters for every run of SimPoint are providing the frequency vectors (one
of -1loadFVFile, -loadVectorsTxtFmt, or ~loadVectorsBinFmt) and the range of k values
using either -k or -maxK.
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