TypeScript
什么是typescript?
TypeScript简称TS
TS和JS之间的关系其实就是Less/Sass和CSS之间的关系
就像Less/Sass是对CSS进行扩展一样, TS也是对JS进行扩展
就像Less/Sass最终会转换成CSS一样, 我们编写好的TS代码最终也会换成JS
TypeScript是JavaScript的超集,因为它扩展了JavaScript,有JavaScript没有的东西。
安装最新版typescript
npm i -g typescript
复制代码
安装ts-node
npm i -g ts-node
复制代码
创建一个 tsconfig.json 文件
tsc --init
复制代码
然后新建index.ts,输入相关练习代码,然后执行 ts-node index.ts
JS的八种内置类型
let str: string = "jimmy";
let num: number = 24;
let bool: boolean = false;
let u: undefined = undefined;
let n: null = null;
let obj: object = {x: 1};
let big: bigint = 100n;
let sym: symbol = Symbol("me");
undefined和null
null和undefined
默认情况下 null
和 undefined
是所有类型的子类型。 就是说你可以把 null
和 undefined
赋值给其他类型。
// null和undefined赋值给string
let str:string = "666";
str = null
str= undefined
// null和undefined赋值给number
let num:number = 666;
num = null
num= undefined
// null和undefined赋值给object
let obj:object ={};
obj = null
obj= undefined
// null和undefined赋值给Symbol
let sym: symbol = Symbol("me");
sym = null
sym= undefined
如果你在tsconfig.json指定了"strictNullChecks":true
,null
和 undefined
只能赋值给 void
和它们各自的类型。
数组
对数组类型的定义有两种方式:
let arr:string[] = ["1","2"];
let arr2:Array<string> = ["1","2"];
复制代码
定义联合类型数组
let arr:(number | string)[];
// 表示定义了一个名称叫做arr的数组,
// 这个数组中将来既可以存储数值类型的数据, 也可以存储字符串类型的数据
arr3 = [1, 'b', 2, 'c'];
复制代码
定义指定对象成员的数组:
// interface是接口,后面会讲到
interface Arrobj{
name:string,
age:number
}
let arr3:Arrobj[]=[{name:'jimmy',age:22}]
函数
函数声明
function sum(x: number, y: number): number {
return x + y;
}
复制代码
函数表达式
let mySum: (x: number, y: number) => number = function (x: number, y: number): number {
return x + y;
};
可选参数和默认参数
把firstName
的默认值设置为 "A"
。
function buildName(firstName: string = 'A', lastName?: string): string {
if (lastName) {
return firstName + '-' + lastName
} else {
return firstName
}
}
console.log(buildName('C', 'D'))//C-D
console.log(buildName('C'))//C
console.log(buildName())//A
剩余参数
在 JavaScript 里,你可以使用 arguments
来访问所有传入的参数。
在 TypeScript 里,你可以把所有参数收集到一个变量里: 剩余参数会被当做个数不限的可选参数。
function info(x: string, ...args: string[]) {
console.log(x, args)
}
info('abc', 'c', 'b', 'a')
函数重载
函数重载: 函数名相同, 而形参不同的多个函数 在 JS 中, 由于弱类型的特点和形参与实参可以不匹配, 是没有函数重载这一说的 但在 TS 中, 与其它面向对象的语言(如 Java)就存在此语法
/*
函数重载: 函数名相同, 而形参不同的多个函数
需求: 我们有一个add函数,它可以接收2个string类型的参数进行拼接,也可以接收2个number类型的参数进行相加
*/
// 重载函数声明 这下边两行可以不写
function add(x: string, y: string): string
function add(x: number, y: number): number
// 定义函数实现
function add(x: string | number, y: string | number): string | number {
// 在实现上我们要注意严格判断两个参数的类型是否相等,而不能简单的写一个 x + y
if (typeof x === 'string' && typeof y === 'string') {
return x + y
} else if (typeof x === 'number' && typeof y === 'number') {
return x + y
}
}
console.log(add(1, 2))
console.log(add('a', 'b'))
// console.log(add(1, 'a')) // error
类
继承
在 TypeScript 里,我们可以使用常用的面向对象模式。 基于类的程序设计中一种最基本的模式是允许使用继承来扩展现有的类。
看下面的例子:
/*
类的继承
*/
class Animal {
run(distance: number) {
console.log(`Animal run ${distance}m`)
}
}
class Dog extends Animal {
cry() {
console.log('wang! wang!')
}
}
const dog = new Dog()
dog.cry()
dog.run(100) // 可以调用从父中继承得到的方法
公共,私有与受保护的修饰符
默认为 public
理解 private
当成员被标记成 private
时,它就不能在声明它的类的外部访问。
理解 protected
protected
修饰符与 private
修饰符的行为很相似,但有一点不同,protected
成员在派生类中仍然可以访问。例如:
:
/*
访问修饰符: 用来描述类内部的属性/方法的可访问性
public: 默认值, 公开的外部也可以访问
private: 只能类内部可以访问
protected: 类内部和子类可以访问
*/
class Animal {
public name: string
public constructor(name: string) {
this.name = name
}
public run(distance: number = 0) {
console.log(`${this.name} run ${distance}m`)
}
}
class Person extends Animal {
private age: number = 18
protected sex: string = '男'
run(distance: number = 5) {
console.log('Person jumping...')
super.run(distance)
}
}
class Student extends Person {
run(distance: number = 6) {
console.log('Student jumping...')
console.log(this.sex) // 子类能看到父类中受保护的成员
// console.log(this.age) // 子类看不到父类中私有的成员
super.run(distance)
}
}
console.log(new Person('abc').name) // 公开的可见
// console.log(new Person('abc').sex) // 受保护的不可见
// console.log(new Person('abc').age) // 私有的不可见
静态属性
/*
静态属性, 是类对象的属性
非静态属性, 是类的实例对象的属性
*/
class Person {
name1: string = 'A'
static name2: string = 'B'
}
console.log(Person.name2)
console.log(new Person().name1)
抽象类
抽象类做为其它派生类的基类使用。 它们不能被实例化。不同于接口,抽象类可以包含成员的实现细节。 abstract
关键字是用于定义抽象类和在抽象类内部定义抽象方法。
/*
抽象类
不能创建实例对象, 只有实现类才能创建实例
可以包含未实现的抽象方法
*/
abstract class Animal {
abstract cry()
run() {
console.log('run()')
}
}
class Dog extends Animal {
cry() {
console.log(' Dog cry()')
}
}
const dog = new Dog()
dog.cry()
dog.run()
Tuple(元组)
元组最重要的特性是可以限制数组元素的个数和类型
,它特别适合用来实现多值返回。
let t1: [string, number]
t1 = ['hello', 10] // OK
t1 = [10, 'hello'] // Error
当访问一个已知索引的元素,会得到正确的类型:
console.log(t1[0].substring(1)) // OK
console.log(t1[1].substring(1)) // Error, 'number' 不存在 'substring' 方法
void
某种程度上来说,void
类型像是与 any
类型相反,它表示没有任何类型
。 当一个函数没有返回值时,你通常会见到其返回值类型是 void
:
/* 表示没有任何类型, 一般用来说明函数的返回值不能是undefined和null之外的值 */
function fn(): void {
console.log('fn()')
// return undefined
// return null
// return 1 // error
}
声明一个 void
类型的变量没有什么大用,因为你只能为它赋予 undefined
和 null
:
let unusable: void = undefined
值得注意的是,方法没有返回值将得到undefined
,但是我们需要定义成void
类型,而不是undefined
类型。否则将报错:
any
在 TypeScript 中,任何类型都可以被归为 any 类型。这让 any 类型成为了类型系统的顶级类型.
如果是一个普通类型,在赋值过程中改变类型是不被允许的:
let a: string = 'seven';
a = 7;
// TS2322: Type 'number' is not assignable to type 'string'.
复制代码
但如果是 any
类型,则允许被赋值为任意类型。
let a: any = 666;
a = "Semlinker";
a = false;
a = 66
变量如果在声明的时候,未指定其类型,那么它会被识别为任意值类型:
let something;
something = 'seven';
something = 7;
something.setName('Tom');
等价于
let something : any;
object、Object 和 {}
小 object 代表的是所有非原始类型,也就是说我们不能把 number、string、boolean、symbol等 原始类型赋值给 object。在严格模式下,null
和 undefined
类型也不能赋给 object。
JavaScript 中以下类型被视为原始类型:
string
、boolean
、number
、bigint
、symbol
、null
和undefined
。
下面我们看一个具体示例:
let lowerCaseObject: object;
lowerCaseObject = 1; // ts(2322)
lowerCaseObject = 'a'; // ts(2322)
lowerCaseObject = true; // ts(2322)
lowerCaseObject = null; // ts(2322)
lowerCaseObject = undefined; // ts(2322)
lowerCaseObject = {}; // ok
复制代码
在示例中的第 2~6 行都会提示 ts(2322) 错误,但是我们在第 7 行把一个空对象赋值给 object 后,则可以通过静态类型检测。
大Object 代表所有拥有 toString、hasOwnProperty 方法的类型,所以所有原始类型、非原始类型都可以赋给 Object。同样,在严格模式下,null 和 undefined 类型也不能赋给 Object。
下面我们也看一个具体的示例:
let upperCaseObject: Object;
upperCaseObject = 1; // ok
upperCaseObject = 'a'; // ok
upperCaseObject = true; // ok
upperCaseObject = null; // ts(2322)
upperCaseObject = undefined; // ts(2322)
upperCaseObject = {}; // ok
{}空对象类型和大 Object 一样,也是表示原始类型和非原始类型的集合,并且在严格模式下,null 和 undefined 也不能赋给 {}
综上结论:{}、大 Object 是比小 object 更宽泛的类型(least specific),{} 和大 Object 可以互相代替,用来表示原始类型(null、undefined 除外)和非原始类型;而小 object 则表示非原始类型。
类型推断|断言
类型推断: TS 会在没有明确的指定类型的时候推测出一个类型 有下面 2 种情况:
1. 定义变量时赋值了, 推断为对应的类型. 2. 定义变量时没有赋值, 推断为 any 类型
/* 定义变量时赋值了, 推断为对应的类型 */
let b9 = 123 // number
// b9 = 'abc' // error
/* 定义变量时没有赋值, 推断为any类型 */
let b10 // any类型
b10 = 123
b10 = 'abc'
类型断言:
通过类型断言这种方式可以告诉编译器,“相信我,我知道自己在干什么”。 类型断言好比其它语言里的类型转换,但是不进行特殊的数据检查和解构。 它没有运行时的影响,只是在编译阶段起作用。
比如下面的例子:
const arrayNumber: number[] = [1, 2, 3, 4];
const greaterThan2: number = arrayNumber.find(num => num > 2); // 提示 ts(2322)
复制代码
其中,greaterThan2 一定是一个数字(确切地讲是 3),因为 arrayNumber 中明显有大于 2 的成员,但静态类型对运行时的逻辑无能为力。
在 TypeScript 看来,greaterThan2 的类型既可能是数字,也可能是 undefined,所以上面的示例中提示了一个 ts(2322) 错误,此时我们不能把类型 undefined 分配给类型 number。
不过,我们可以使用一种笃定的方式——类型断言
比如,我们可以使用 as 语法做类型断言,如下代码所示:
const arrayNumber: number[] = [1, 2, 3, 4];
const greaterThan2: number = arrayNumber.find(num => num > 2) as number;
接口
TypeScript 的核心原则之一是对值所具有的结构进行类型检查。我们使用接口(Interfaces)来定义对象的类型。接口是对象的状态(属性)和行为(方法)的抽象(描述)
简单的例子
interface Person {
name: string;
age: number;
}
let tom: Person = {
name: 'Tom',
age: 25
};
复制代码
上面的例子中,我们定义了一个接口 Person
,接着定义了一个变量 tom
,它的类型是 Person
。这样,我们就约束了 tom
的形状必须和接口 Person
一致。
接口一般首字母大写。
定义的变量比接口少了一些属性是不允许的:
interface Person {
name: string;
age: number;
}
let tom: Person = {
name: 'Tom'
};
// index.ts(6,5): error TS2322: Type '{ name: string; }' is not assignable to type 'Person'.
// Property 'age' is missing in type '{ name: string; }'.
复制代码
多一些属性也是不允许的:
interface Person {
name: string;
age: number;
}
let tom: Person = {
name: 'Tom',
age: 25,
gender: 'male'
};
// index.ts(9,5): error TS2322: Type '{ name: string; age: number; gender: string; }' is not assignable to type 'Person'.
// Object literal may only specify known properties, and 'gender' does not exist in type 'Person'.
复制代码
可见,赋值的时候,变量的形状必须和接口的形状保持一致。
可选 | 只读属性
interface Person {
readonly name: string;
age?: number;
}
任意属性
有时候我们希望一个接口中除了包含必选和可选属性之外,还允许有其他的任意属性,这时我们可以使用 索引签名 的形式来满足上述要求。
interface Person {
name: string;
age?: number;
[propName: string]: any;
}
let tom: Person = {
name: 'Tom',
gender: 'male'
};
复制代码
需要注意的是,一旦定义了任意属性,那么确定属性和可选属性的类型都必须是它的类型的子集
集
interface Person {
name: string;
age?: number;
[propName: string]: string;
}
let tom: Person = {
name: 'Tom',
age: 25,
gender: 'male'
};
上例中,任意属性的值允许是 string
,但是可选属性 age
的值却是 number
,number
不是 string
的子属性,所以报错了。
一个接口中只能定义一个任意属性。如果接口中有多个类型的属性,则可以在任意属性中使用联合类型
函数类型
接口表示函数类型,我们需要给接口定义一个调用签名。它就像是一个只有参数列表和返回值类型的函数定义。参数列表里的每个参数都需要名字和类型。
/*
接口可以描述函数类型(参数的类型与返回的类型)
*/
interface SearchFunc {
(source: string, subString: string): boolean
}
const mySearch: SearchFunc = function(source: string, sub: string): boolean {
return source.search(sub) > -1
}
类实现接口
/*
类类型: 实现接口
1. 一个类可以实现多个接口
2. 一个接口可以继承多个接口
*/
interface Alarm {
alert(): any
}
interface Light {
lightOn(): void
lightOff(): void
}
class Car implements Alarm {
alert() {
console.log('Car alert')
}
}
一个类可以实现多个接口
class Car2 implements Alarm, Light {
alert() {
console.log('Car alert')
}
lightOn() {
console.log('Car light on')
}
lightOff() {
console.log('Car light off')
}
}
接口继承接口
和类一样,接口也可以相互继承。 这让我们能够从一个接口里复制成员到另一个接口里,可以更灵活地将接口分割到可重用的模块里。
interface LightableAlarm extends Alarm, Light {}
泛型
指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定具体类型的一种特性。
举个例子:
const identity = (arg) => arg;
identity("string").length; // ok
identity("string").toFixed(2); // ok
identity(null).toString(); // ok
...
复制代码
如果你使用 any 的话,怎么写都是 ok 的, 这就丧失了类型检查的效果。
也就是说我真正想要的效果是:当我用到id的时候,你根据我传给你的类型进行推导
。比如我传入的是 string,但是使用了 number 上的方法,你就应该报错。
为了解决上面的这些问题,我们使用泛型对上面的代码进行重构。和我们的定义不同,这里用了一个 类型 T,这个 T 是一个抽象类型,只有在调用的时候才确定它的值
function swap<K, V>(a: K, b: V): [K, V] {
return [a, b]
}
const result = swap<string, number>('abc', 123)
console.log(result[0].length, result[1].toFixed())
//result[0].toFixed()会报错
除了为类型变量显式设定值之外,一种更常见的做法是使编译器自动选择这些类型,从而使代码更简洁。我们可以完全省略尖括号,比如:
function identity <T, U>(value: T, message: U) : T {
console.log(message);
return value;
}
console.log(identity(68, "Semlinker"));
泛型约束
如果我们直接对一个泛型参数取 length
属性, 会报错, 因为这个泛型根本就不知道它有这个属性
// 没有泛型约束
function fn<T>(x: T): void {
// console.log(x.length) // error
}
我们可以使用泛型约束来实现
interface Lengthwise {
length: number
}
// 指定泛型约束
function fn2<T extends Lengthwise>(x: T): void {
console.log(x.length)
}
我们需要传入符合约束类型的值,必须包含必须 length
属性:
fn2('abc')
// fn2(123) // error number没有length属性
泛型接口
在定义接口时, 为接口中的属性或方法定义泛型类型 在使用接口时, 再指定具体的泛型类型
interface IbaseCRUD<T> {
data: T[]
add: (t: T) => void
getById: (id: number) => T
}
class User {
id?: number //id主键自增
name: string //姓名
age: number //年龄
constructor(name, age) {
this.name = name
this.age = age
}
}
class UserCRUD implements IbaseCRUD<User> {
data: User[] = []
add(user: User): void {
user = { ...user, id: Date.now() }
this.data.push(user)
console.log('保存user', user.id)
}
getById(id: number): User {
return this.data.find(item => item.id === id)
}
}
const userCRUD = new UserCRUD()
userCRUD.add(new User('tom', 12))
userCRUD.add(new User('tom2', 13))
console.log(userCRUD.data)